大 O:n^2 = Ω(n log n)?

Big-O: n^2 = Ω(n log n)?

Ω(n log n) 是否等于 n^2?

补充:谁能给我解释清楚big O, Θ, Ω是什么意思?

不是,是欧米茄,上面写着"It is asymptotically same or lower"。

在"asymptoticall"等式中,等同于n^2 >= n log n


额外:

标准方程 || 文本表示 || 渐近方程

f(x) = O(g(x)) || g(x) is asymptotically same or higher as f(x) || f(x) <= g(x)
f(x) = Θ(g(x)) || g(x) is asymptotically same as f(x) || f(x) = g(x)
f(x) = Ω(g(x)) || g(x) is asymptotically same or lower as (fx) || f(x) >= O(g(x))

PS:还要注意,如果f(x) = O(g(x))也意味着g(x) = Ω(f(x)),这类似于if f(x) <= g(x) then g(x) >= f(x)

n^2 = Ω(n log n)不是相等,而是函数之间的关系。
您可以阅读它并查看示例 here.