大 O:n^2 = Ω(n log n)?
Big-O: n^2 = Ω(n log n)?
Ω(n log n) 是否等于 n^2?
补充:谁能给我解释清楚big O, Θ, Ω是什么意思?
不是,是欧米茄,上面写着"It is asymptotically same or lower"。
在"asymptoticall"等式中,等同于n^2 >= n log n
额外:
标准方程 || 文本表示 || 渐近方程
f(x) = O(g(x)) || g(x) is asymptotically same or higher as f(x) || f(x) <= g(x)
f(x) = Θ(g(x)) || g(x) is asymptotically same as f(x) || f(x) = g(x)
f(x) = Ω(g(x)) || g(x) is asymptotically same or lower as (fx) || f(x) >= O(g(x))
PS:还要注意,如果f(x) = O(g(x))
也意味着g(x) = Ω(f(x))
,这类似于if f(x) <= g(x)
then g(x) >= f(x)
n^2 = Ω(n log n)
不是相等,而是函数之间的关系。
您可以阅读它并查看示例 here.
Ω(n log n) 是否等于 n^2?
补充:谁能给我解释清楚big O, Θ, Ω是什么意思?
不是,是欧米茄,上面写着"It is asymptotically same or lower"。
在"asymptoticall"等式中,等同于n^2 >= n log n
额外:
标准方程 || 文本表示 || 渐近方程
f(x) = O(g(x)) || g(x) is asymptotically same or higher as f(x) || f(x) <= g(x)
f(x) = Θ(g(x)) || g(x) is asymptotically same as f(x) || f(x) = g(x)
f(x) = Ω(g(x)) || g(x) is asymptotically same or lower as (fx) || f(x) >= O(g(x))
PS:还要注意,如果f(x) = O(g(x))
也意味着g(x) = Ω(f(x))
,这类似于if f(x) <= g(x)
then g(x) >= f(x)
n^2 = Ω(n log n)
不是相等,而是函数之间的关系。
您可以阅读它并查看示例 here.