如何跟踪特定值的 "fate"?
How do I trace "fate" of a particular value?
我在某些地方看到了一些价值,但不确定它起源于我的程序的何处。我如何找出这个值最初来自哪里?
我希望记录以下事件类型:
- 源自常量、算术表达式或系统调用的值 - 初始事件;
- 该值已分配给某个变量(或从中检索);
- 该值作为参数传递或return来自某个函数;
- 该值已存储到(或从中检索到)某个结构;
- 通过用特定的东西注释源代码,我触发了这个值的历史转储。
例如,对于此示例代码:
#include <stdlib.h>
struct SomeStruct {
int a;
int b;
};
struct SomeStruct *globalvar;
int f1(struct SomeStruct* par) {
return par->a;
}
int f2(struct SomeStruct* par, int q) {
par->a = q;
return par->b;
}
void trace_value(int g) {} /* dummy */
int main(void) {
int f = 31337;
globalvar = malloc(sizeof(*globalvar));
f2(globalvar, f);
struct SomeStruct q = *globalvar;
int g = f1(&q);
trace_value(g);
return 0;
}
应该return类似于
value 31337 originated from constant at fate.c:18
assigned to variable at fate.c:18
retrieved from variable at fate.c:21
passed as argument to function at fate.c:21
received as arument to a function at fate.c:12
assigned to struct field at fate.c:13
copied as a part of struct at fate.c:22
retrieved from struct field at fate.c:9
returned from function at fate.c:10
assigned to variable at fate.c:23
retrieved from variable at fate.c:25
traced at fate.c:25
我该怎么做或做类似的事情?我希望 Valgrind 或 GDB 或某些组合应该能够做到这一点。
我相信它可以在运行时通过称为 "reverse debugging" 的技术 手动完成 (即 运行 在 gdb
会话中)。我还没有尝试过,但是 GDB 7.0 版文档 claims,它在某些平台上受支持。
该方法类似于:
- 本地化最后一个地方使用变量的单步(也就是你的"starting point")
- 分析堆栈帧的源代码(所以你需要可用的调试符号和代码段)(例如通过
list
),这样你就知道这个值是如何通过(例如从参数传递给函数)
- 退回上一个堆栈帧并从上一步重复,除非找到它的来源
这是您的示例代码的一些概念验证会话。我对其进行了一些编辑,因为 trace_value
函数未定义。请注意,record
命令可能会严重降低程序的执行速度。
$ gdb -q a.out
Reading symbols from /home/grzegorz/workspace/a.out...done.
(gdb) b main
Breakpoint 1 at 0x400502: file fate.c, line 22.
(gdb) run
Starting program: /home/grzegorz/workspace/a.out
Breakpoint 1, main () at fate.c:22
22 int f = 31337;
Missing separate debuginfos, use: debuginfo-install glibc-2.12-1.149.el6_6.5.x86_64
(gdb) record
(gdb) b trace_value
Breakpoint 2 at 0x4004f8: file fate.c, line 19.
(gdb) c
Continuing.
Breakpoint 2, trace_value (g=31337) at fate.c:19
19 void trace_value(int g){}
(gdb) info args
g = 31337
(gdb) reverse-finish
Run back to call of #0 trace_value (g=31337) at fate.c:19
0x0000000000400550 in main () at fate.c:29
29 trace_value(g);
(gdb) bt
#0 0x0000000000400550 in main () at fate.c:29
(gdb) list 29
24 globalvar = malloc(sizeof(*globalvar));
25 f2(globalvar, f);
26 struct SomeStruct q = *globalvar;
27 int g = f1(&q);
28
29 trace_value(g);
30
31 return 0;
32 }
很少有事情需要解释。你需要先在main
设置断点,因为这是程序开始执行的时候,然后通过record
命令开启session recording。然后在trace_value
函数处设置第二个断点并使用continue
命令(简称c
)。这允许您记录整个执行直到输入 trace_value
的时刻。您可能会认为它是上面描述的 "starting point"。
这当然不是全部。如前所述,您需要分析当前堆栈框架的源代码,然后决定下一步做什么。您可以根据当前情况使用reverse-step
或reverse-finish
命令。
结合 使用反向 gdb 和 MarkPlotnick 关于使用 gdb 观察点的评论中的 idea2。这是演示会话,比原始答案更完整:
$ gcc -ggdb -Dtrace_value=exit fate.c -o fate
$ gdb -quiet -args ./fate
Reading symbols from /home/vi/code/_/fate...done.
(gdb) break main
Breakpoint 1 at 0x8048482: file fate.c, line 18.
(gdb) r
Starting program: /home/vi/code/_/fate
warning: Could not load shared library symbols for linux-gate.so.1.
Do you need "set solib-search-path" or "set sysroot"?
Breakpoint 1, main () at fate.c:18
18 int f = 31337;
(gdb) record
(gdb) break 25
(gdb) # traced at fate.c:25
Breakpoint 2 at 0x80484d2: file fate.c, line 25.
(gdb) c
Continuing.
Breakpoint 2, main () at fate.c:25
25 trace_value(g);
(gdb) # retrieved from variable at fate.c:25
(gdb) watch g
Hardware watchpoint 3: g
(gdb) reverse-continue
Continuing.
Hardware watchpoint 3: g
Old value = 31337
New value = 134513899
0x080484ce in main () at fate.c:23
23 int g = f1(&q);
(gdb) # assigned to variable at fate.c:23
(gdb) # returned from function at fate.c:10
(gdb) reverse-step
f1 (par=0xffffd670) at fate.c:10
10 }
(gdb) list
5
6 struct SomeStruct *globalvar;
7
8 int f1(struct SomeStruct* par) {
9 return par->a;
10 }
11
12 int f2(struct SomeStruct* par, int q) {
13 par->a = q;
14 return par->b;
(gdb) # retrieved from struct field at fate.c:9
(gdb) print par
= (struct SomeStruct *) 0xffffd670
(gdb) print ((struct SomeStruct *) 0xffffd670)->a
= 31337
(gdb) watch ((struct SomeStruct *) 0xffffd670)->a
Hardware watchpoint 4: ((struct SomeStruct *) 0xffffd670)->a
(gdb) reverse-continue
Continuing.
Hardware watchpoint 4: ((struct SomeStruct *) 0xffffd670)->a
Old value = 31337
New value = -134716508
0x080484ba in main () at fate.c:22
22 struct SomeStruct q = *globalvar;
(gdb) # copied as a part of struct at fate.c:22
(gdb) print globalvar->a
= 31337
(gdb) watch globalvar->a
Hardware watchpoint 5: globalvar->a
(gdb) reverse-continue
Continuing.
Hardware watchpoint 5: globalvar->a
Old value = 31337
New value = 0
0x0804846f in f2 (par=0x804a008, q=31337) at fate.c:13
13 par->a = q;
(gdb) # assigned to struct field at fate.c:13
(gdb) # received as arument to a function at fate.c:12
(gdb) list
8 int f1(struct SomeStruct* par) {
9 return par->a;
10 }
11
12 int f2(struct SomeStruct* par, int q) {
13 par->a = q;
14 return par->b;
15 }
16
17 int main() {
(gdb) bt
#0 0x0804846f in f2 (par=0x804a008, q=31337) at fate.c:13
#1 0x080484b0 in main () at fate.c:21
(gdb) reverse-finish
Run back to call of #0 0x0804846f in f2 (par=0x804a008, q=31337) at fate.c:13
0x080484ab in main () at fate.c:21
21 f2(globalvar, f);
(gdb) # passed as argument to function at fate.c:21
(gdb) # retrieved from variable at fate.c:21
(gdb) watch f
Hardware watchpoint 6: f
(gdb) reverse-finish
"finish" not meaningful in the outermost frame.
(gdb) reverse-continue
Continuing.
Warning:
Could not insert hardware watchpoint 6.
Could not insert hardware breakpoints:
You may have requested too many hardware breakpoints/watchpoints.
(gdb) delete
Delete all breakpoints? (y or n) y
(gdb) watch f
Hardware watchpoint 7: f
(gdb) reverse-continue
Continuing.
No more reverse-execution history.
main () at fate.c:18
18 int f = 31337;
(gdb) # assigned to variable at fate.c:18
(gdb) # value 31337 originated from constant at fate.c:18
问题陈述中的所有预期消息都对应于您在 gdb 输出中看到的某些信息(如评论中所示)。
我在某些地方看到了一些价值,但不确定它起源于我的程序的何处。我如何找出这个值最初来自哪里?
我希望记录以下事件类型:
- 源自常量、算术表达式或系统调用的值 - 初始事件;
- 该值已分配给某个变量(或从中检索);
- 该值作为参数传递或return来自某个函数;
- 该值已存储到(或从中检索到)某个结构;
- 通过用特定的东西注释源代码,我触发了这个值的历史转储。
例如,对于此示例代码:
#include <stdlib.h>
struct SomeStruct {
int a;
int b;
};
struct SomeStruct *globalvar;
int f1(struct SomeStruct* par) {
return par->a;
}
int f2(struct SomeStruct* par, int q) {
par->a = q;
return par->b;
}
void trace_value(int g) {} /* dummy */
int main(void) {
int f = 31337;
globalvar = malloc(sizeof(*globalvar));
f2(globalvar, f);
struct SomeStruct q = *globalvar;
int g = f1(&q);
trace_value(g);
return 0;
}
应该return类似于
value 31337 originated from constant at fate.c:18
assigned to variable at fate.c:18
retrieved from variable at fate.c:21
passed as argument to function at fate.c:21
received as arument to a function at fate.c:12
assigned to struct field at fate.c:13
copied as a part of struct at fate.c:22
retrieved from struct field at fate.c:9
returned from function at fate.c:10
assigned to variable at fate.c:23
retrieved from variable at fate.c:25
traced at fate.c:25
我该怎么做或做类似的事情?我希望 Valgrind 或 GDB 或某些组合应该能够做到这一点。
我相信它可以在运行时通过称为 "reverse debugging" 的技术 手动完成 (即 运行 在 gdb
会话中)。我还没有尝试过,但是 GDB 7.0 版文档 claims,它在某些平台上受支持。
该方法类似于:
- 本地化最后一个地方使用变量的单步(也就是你的"starting point")
- 分析堆栈帧的源代码(所以你需要可用的调试符号和代码段)(例如通过
list
),这样你就知道这个值是如何通过(例如从参数传递给函数) - 退回上一个堆栈帧并从上一步重复,除非找到它的来源
这是您的示例代码的一些概念验证会话。我对其进行了一些编辑,因为 trace_value
函数未定义。请注意,record
命令可能会严重降低程序的执行速度。
$ gdb -q a.out
Reading symbols from /home/grzegorz/workspace/a.out...done.
(gdb) b main
Breakpoint 1 at 0x400502: file fate.c, line 22.
(gdb) run
Starting program: /home/grzegorz/workspace/a.out
Breakpoint 1, main () at fate.c:22
22 int f = 31337;
Missing separate debuginfos, use: debuginfo-install glibc-2.12-1.149.el6_6.5.x86_64
(gdb) record
(gdb) b trace_value
Breakpoint 2 at 0x4004f8: file fate.c, line 19.
(gdb) c
Continuing.
Breakpoint 2, trace_value (g=31337) at fate.c:19
19 void trace_value(int g){}
(gdb) info args
g = 31337
(gdb) reverse-finish
Run back to call of #0 trace_value (g=31337) at fate.c:19
0x0000000000400550 in main () at fate.c:29
29 trace_value(g);
(gdb) bt
#0 0x0000000000400550 in main () at fate.c:29
(gdb) list 29
24 globalvar = malloc(sizeof(*globalvar));
25 f2(globalvar, f);
26 struct SomeStruct q = *globalvar;
27 int g = f1(&q);
28
29 trace_value(g);
30
31 return 0;
32 }
很少有事情需要解释。你需要先在main
设置断点,因为这是程序开始执行的时候,然后通过record
命令开启session recording。然后在trace_value
函数处设置第二个断点并使用continue
命令(简称c
)。这允许您记录整个执行直到输入 trace_value
的时刻。您可能会认为它是上面描述的 "starting point"。
这当然不是全部。如前所述,您需要分析当前堆栈框架的源代码,然后决定下一步做什么。您可以根据当前情况使用reverse-step
或reverse-finish
命令。
结合
$ gcc -ggdb -Dtrace_value=exit fate.c -o fate
$ gdb -quiet -args ./fate
Reading symbols from /home/vi/code/_/fate...done.
(gdb) break main
Breakpoint 1 at 0x8048482: file fate.c, line 18.
(gdb) r
Starting program: /home/vi/code/_/fate
warning: Could not load shared library symbols for linux-gate.so.1.
Do you need "set solib-search-path" or "set sysroot"?
Breakpoint 1, main () at fate.c:18
18 int f = 31337;
(gdb) record
(gdb) break 25
(gdb) # traced at fate.c:25
Breakpoint 2 at 0x80484d2: file fate.c, line 25.
(gdb) c
Continuing.
Breakpoint 2, main () at fate.c:25
25 trace_value(g);
(gdb) # retrieved from variable at fate.c:25
(gdb) watch g
Hardware watchpoint 3: g
(gdb) reverse-continue
Continuing.
Hardware watchpoint 3: g
Old value = 31337
New value = 134513899
0x080484ce in main () at fate.c:23
23 int g = f1(&q);
(gdb) # assigned to variable at fate.c:23
(gdb) # returned from function at fate.c:10
(gdb) reverse-step
f1 (par=0xffffd670) at fate.c:10
10 }
(gdb) list
5
6 struct SomeStruct *globalvar;
7
8 int f1(struct SomeStruct* par) {
9 return par->a;
10 }
11
12 int f2(struct SomeStruct* par, int q) {
13 par->a = q;
14 return par->b;
(gdb) # retrieved from struct field at fate.c:9
(gdb) print par
= (struct SomeStruct *) 0xffffd670
(gdb) print ((struct SomeStruct *) 0xffffd670)->a
= 31337
(gdb) watch ((struct SomeStruct *) 0xffffd670)->a
Hardware watchpoint 4: ((struct SomeStruct *) 0xffffd670)->a
(gdb) reverse-continue
Continuing.
Hardware watchpoint 4: ((struct SomeStruct *) 0xffffd670)->a
Old value = 31337
New value = -134716508
0x080484ba in main () at fate.c:22
22 struct SomeStruct q = *globalvar;
(gdb) # copied as a part of struct at fate.c:22
(gdb) print globalvar->a
= 31337
(gdb) watch globalvar->a
Hardware watchpoint 5: globalvar->a
(gdb) reverse-continue
Continuing.
Hardware watchpoint 5: globalvar->a
Old value = 31337
New value = 0
0x0804846f in f2 (par=0x804a008, q=31337) at fate.c:13
13 par->a = q;
(gdb) # assigned to struct field at fate.c:13
(gdb) # received as arument to a function at fate.c:12
(gdb) list
8 int f1(struct SomeStruct* par) {
9 return par->a;
10 }
11
12 int f2(struct SomeStruct* par, int q) {
13 par->a = q;
14 return par->b;
15 }
16
17 int main() {
(gdb) bt
#0 0x0804846f in f2 (par=0x804a008, q=31337) at fate.c:13
#1 0x080484b0 in main () at fate.c:21
(gdb) reverse-finish
Run back to call of #0 0x0804846f in f2 (par=0x804a008, q=31337) at fate.c:13
0x080484ab in main () at fate.c:21
21 f2(globalvar, f);
(gdb) # passed as argument to function at fate.c:21
(gdb) # retrieved from variable at fate.c:21
(gdb) watch f
Hardware watchpoint 6: f
(gdb) reverse-finish
"finish" not meaningful in the outermost frame.
(gdb) reverse-continue
Continuing.
Warning:
Could not insert hardware watchpoint 6.
Could not insert hardware breakpoints:
You may have requested too many hardware breakpoints/watchpoints.
(gdb) delete
Delete all breakpoints? (y or n) y
(gdb) watch f
Hardware watchpoint 7: f
(gdb) reverse-continue
Continuing.
No more reverse-execution history.
main () at fate.c:18
18 int f = 31337;
(gdb) # assigned to variable at fate.c:18
(gdb) # value 31337 originated from constant at fate.c:18
问题陈述中的所有预期消息都对应于您在 gdb 输出中看到的某些信息(如评论中所示)。