ggplot2 中的迷你图

Sparklines in ggplot2

Tufte Sparklines(如他的 Beautiful Evidence 所示)已作为 YaleToolkit and further perfected as a result of this question. Sparklines have also been done in lattice as a part of my small side project Tufte in R (self-promotion not intended). My goal now is to replicate Tufte sparklines in ggplot2. There are some scripts floating around on Gist and also as a reply to this question on SO 的一部分复制到 base graphics 中,但其中 none 为制作可复制的迷你图集奠定了坚实的基础。

现在,我希望这些多条迷你图看起来像这样(它是在基本图形和 code is available here 中完成的)- 点代表 maximum/minimum 值,右端的数字是最后一个特定时间序列和灰色带中的值显示粗略的分位数范围:

我离得不远,但我被minimal/maximum值和标签的分配困住了:

library(ggplot2)
library(ggthemes)
library(dplyr)
library(reshape)
library(RCurl)
dd <- read.csv(text =
  getURL("https://gist.githubusercontent.com/GeekOnAcid/da022affd36310c96cd4/raw/9c2ac2b033979fcf14a8d9b2e3e390a4bcc6f0e3/us_nr_of_crimes_1960_2014.csv"))
d <- melt(dd, id="Year")
names(d) <- c("Year","Crime.Type","Crime.Rate")
dd <- group_by(d, Crime.Type) %>% 
  mutate(color = (min(Crime.Rate) == Crime.Rate | max(Crime.Rate) == Crime.Rate))
ggplot(dd, aes(x=Year, y=Crime.Rate)) + 
  facet_grid(Crime.Type ~ ., scales = "free_y") + 
  geom_line(size=0.3) + geom_point(aes(color = color)) + 
  scale_color_manual(values = c(NA, "red"), guide=F) +
  theme_tufte(base_size = 15) + 
  theme(axis.title=element_blank(), 
        axis.text.y = element_blank(), axis.ticks = element_blank()) +
  theme(strip.text.y = element_text(angle = 0, vjust=0.2, hjust=0)) 

这是获取单色点以及三组标签和阴影四分位数范围的一种方法:

# Calculate the min and max values, which.min returns the first (like your example):
mins <- group_by(d, Crime.Type) %>% slice(which.min(Crime.Rate))
maxs <- group_by(d, Crime.Type) %>% slice(which.max(Crime.Rate))
ends <- group_by(d, Crime.Type) %>% filter(Year == max(Year))
quarts <- d %>%
  group_by(Crime.Type) %>%
  summarize(quart1 = quantile(Crime.Rate, 0.25),
            quart2 = quantile(Crime.Rate, 0.75)) %>%
  right_join(d)

ggplot(d, aes(x=Year, y=Crime.Rate)) + 
  facet_grid(Crime.Type ~ ., scales = "free_y") + 
  geom_ribbon(data = quarts, aes(ymin = quart1, ymax = quart2), fill = 'grey90') +
  geom_line(size=0.3) +
  geom_point(data = mins, col = 'blue') +
  geom_text(data = mins, aes(label = Crime.Rate), vjust = -1) +
  geom_point(data = maxs, col = 'red') +
  geom_text(data = maxs, aes(label = Crime.Rate), vjust = 2) +
  geom_text(data = ends, aes(label = Crime.Rate), hjust = 0) +
  geom_text(data = ends, aes(label = Crime.Type), hjust = 0, nudge_x = 5) +
  expand_limits(x = max(d$Year) + (0.25 * (max(d$Year) - min(d$Year)))) +
  scale_x_continuous(breaks = seq(1960, 2010, 10)) +
  scale_y_continuous(expand = c(0.1, 0)) +
  theme_tufte(base_size = 15) +
  theme(axis.title=element_blank(),
        axis.text.y = element_blank(), 
        axis.ticks = element_blank(),
        strip.text = element_blank())

我假设你不想要这里的图例。您几乎可以肯定地通过合并一些 data.frames 使事情变得更简洁,但是这里的多个 geom 调用似乎是最简单的。