如何在 Agda 中实现弗洛伊德的龟兔赛跑算法?
How to implement Floyd's Hare and Tortoise algorithm in Agda?
我想将以下 Haskell 代码翻译成 Agda:
import Control.Arrow (first)
import Control.Monad (join)
safeTail :: [a] -> [a]
safeTail [] = []
safeTail (_:xs) = xs
floyd :: [a] -> [a] -> ([a], [a])
floyd xs [] = ([], xs)
floyd (x:xs) (_:ys) = first (x:) $ floyd xs (safeTail ys)
split :: [a] -> ([a], [a])
split = join floyd
这使我们能够有效地将一个列表分成两部分:
split [1,2,3,4,5] = ([1,2,3], [4,5])
split [1,2,3,4,5,6] = ([1,2,3], [4,5,6])
所以,我尝试将此代码转换为 Agda:
floyd : {A : Set} → List A → List A → List A × List A
floyd xs [] = ([] , xs)
floyd (x :: xs) (_ :: ys) = first (x ::_) (floyd xs (safeTail ys))
唯一的问题是 Agda 抱怨我遗漏了 floyd [] (y :: ys)
的案例。但是,这种情况永远不会发生。我怎样才能向 Agda 证明这种情况永远不会发生?
这是该算法如何工作的直观示例:
+-------------+-------------+
| Tortoise | Hare |
+-------------+-------------+
| ^ 1 2 3 4 5 | ^ 1 2 3 4 5 |
| 1 ^ 2 3 4 5 | 1 2 ^ 3 4 5 |
| 1 2 ^ 3 4 5 | 1 2 3 4 ^ 5 |
| 1 2 3 ^ 4 5 | 1 2 3 4 5 ^ |
+-------------+-------------+
这是另一个例子:
+---------------+---------------+
| Tortoise | Hare |
+---------------+---------------+
| ^ 1 2 3 4 5 6 | ^ 1 2 3 4 5 6 |
| 1 ^ 2 3 4 5 6 | 1 2 ^ 3 4 5 6 |
| 1 2 ^ 3 4 5 6 | 1 2 3 4 ^ 5 6 |
| 1 2 3 ^ 4 5 6 | 1 2 3 4 5 6 ^ |
+---------------+---------------+
当兔子(floyd
的第二个参数)到达列表的末尾时,乌龟(floyd
的第一个参数)到达列表的中间。因此,通过使用两个指针(第二个指针的移动速度是第一个指针的两倍),我们可以有效地将列表一分为二。
与 Twan van Laarhoven 在评论中建议的相同,但带有 Vec
s。他的版本可能更好。
open import Function
open import Data.Nat.Base
open import Data.Product renaming (map to pmap)
open import Data.List.Base
open import Data.Vec hiding (split)
≤-step : ∀ {m n} -> m ≤ n -> m ≤ suc n
≤-step z≤n = z≤n
≤-step (s≤s le) = s≤s (≤-step le)
≤-refl : ∀ {n} -> n ≤ n
≤-refl {0} = z≤n
≤-refl {suc n} = s≤s ≤-refl
floyd : ∀ {A : Set} {n m} -> m ≤ n -> Vec A n -> Vec A m -> List A × List A
floyd z≤n xs [] = [] , toList xs
floyd (s≤s z≤n) (x ∷ xs) (y ∷ []) = x ∷ [] , toList xs
floyd (s≤s (s≤s le)) (x ∷ xs) (y ∷ z ∷ ys) = pmap (x ∷_) id (floyd (≤-step le) xs ys)
split : ∀ {A : Set} -> List A -> List A × List A
split xs = floyd ≤-refl (fromList xs) (fromList xs)
open import Relation.Binary.PropositionalEquality
test₁ : split (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ []) ≡ (1 ∷ 2 ∷ 3 ∷ [] , 4 ∷ 5 ∷ [])
test₁ = refl
test₂ : split (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ []) ≡ (1 ∷ 2 ∷ 3 ∷ [] , 4 ∷ 5 ∷ 6 ∷ [])
test₂ = refl
另外,像≤-refl
和≤-step
这样的函数在标准库的某个地方,但我懒得搜索了。
我 做了一件愚蠢的事:
open import Function
open import Data.Nat.Base
open import Data.Product renaming (map to pmap)
open import Data.List.Base
open import Data.Vec hiding (split)
floyd : ∀ {A : Set}
-> (k : ℕ -> ℕ)
-> (∀ {n} -> Vec A (k (suc n)) -> Vec A (suc (k n)))
-> ∀ n
-> Vec A (k n)
-> List A × List A
floyd k u 0 xs = [] , toList xs
floyd k u 1 xs with u xs
... | x ∷ xs' = x ∷ [] , toList xs'
floyd k u (suc (suc n)) xs with u xs
... | x ∷ xs' = pmap (x ∷_) id (floyd (k ∘ suc) u n xs')
split : ∀ {A : Set} -> List A -> List A × List A
split xs = floyd id id (length xs) (fromList xs)
open import Relation.Binary.PropositionalEquality
test₁ : split (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ []) ≡ (1 ∷ 2 ∷ 3 ∷ [] , 4 ∷ 5 ∷ [])
test₁ = refl
test₂ : split (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ []) ≡ (1 ∷ 2 ∷ 3 ∷ [] , 4 ∷ 5 ∷ 6 ∷ [])
test₂ = refl
这部分基于下面评论中 Benjamin Hodgson 的建议。
我想将以下 Haskell 代码翻译成 Agda:
import Control.Arrow (first)
import Control.Monad (join)
safeTail :: [a] -> [a]
safeTail [] = []
safeTail (_:xs) = xs
floyd :: [a] -> [a] -> ([a], [a])
floyd xs [] = ([], xs)
floyd (x:xs) (_:ys) = first (x:) $ floyd xs (safeTail ys)
split :: [a] -> ([a], [a])
split = join floyd
这使我们能够有效地将一个列表分成两部分:
split [1,2,3,4,5] = ([1,2,3], [4,5])
split [1,2,3,4,5,6] = ([1,2,3], [4,5,6])
所以,我尝试将此代码转换为 Agda:
floyd : {A : Set} → List A → List A → List A × List A
floyd xs [] = ([] , xs)
floyd (x :: xs) (_ :: ys) = first (x ::_) (floyd xs (safeTail ys))
唯一的问题是 Agda 抱怨我遗漏了 floyd [] (y :: ys)
的案例。但是,这种情况永远不会发生。我怎样才能向 Agda 证明这种情况永远不会发生?
这是该算法如何工作的直观示例:
+-------------+-------------+
| Tortoise | Hare |
+-------------+-------------+
| ^ 1 2 3 4 5 | ^ 1 2 3 4 5 |
| 1 ^ 2 3 4 5 | 1 2 ^ 3 4 5 |
| 1 2 ^ 3 4 5 | 1 2 3 4 ^ 5 |
| 1 2 3 ^ 4 5 | 1 2 3 4 5 ^ |
+-------------+-------------+
这是另一个例子:
+---------------+---------------+
| Tortoise | Hare |
+---------------+---------------+
| ^ 1 2 3 4 5 6 | ^ 1 2 3 4 5 6 |
| 1 ^ 2 3 4 5 6 | 1 2 ^ 3 4 5 6 |
| 1 2 ^ 3 4 5 6 | 1 2 3 4 ^ 5 6 |
| 1 2 3 ^ 4 5 6 | 1 2 3 4 5 6 ^ |
+---------------+---------------+
当兔子(floyd
的第二个参数)到达列表的末尾时,乌龟(floyd
的第一个参数)到达列表的中间。因此,通过使用两个指针(第二个指针的移动速度是第一个指针的两倍),我们可以有效地将列表一分为二。
与 Twan van Laarhoven 在评论中建议的相同,但带有 Vec
s。他的版本可能更好。
open import Function
open import Data.Nat.Base
open import Data.Product renaming (map to pmap)
open import Data.List.Base
open import Data.Vec hiding (split)
≤-step : ∀ {m n} -> m ≤ n -> m ≤ suc n
≤-step z≤n = z≤n
≤-step (s≤s le) = s≤s (≤-step le)
≤-refl : ∀ {n} -> n ≤ n
≤-refl {0} = z≤n
≤-refl {suc n} = s≤s ≤-refl
floyd : ∀ {A : Set} {n m} -> m ≤ n -> Vec A n -> Vec A m -> List A × List A
floyd z≤n xs [] = [] , toList xs
floyd (s≤s z≤n) (x ∷ xs) (y ∷ []) = x ∷ [] , toList xs
floyd (s≤s (s≤s le)) (x ∷ xs) (y ∷ z ∷ ys) = pmap (x ∷_) id (floyd (≤-step le) xs ys)
split : ∀ {A : Set} -> List A -> List A × List A
split xs = floyd ≤-refl (fromList xs) (fromList xs)
open import Relation.Binary.PropositionalEquality
test₁ : split (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ []) ≡ (1 ∷ 2 ∷ 3 ∷ [] , 4 ∷ 5 ∷ [])
test₁ = refl
test₂ : split (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ []) ≡ (1 ∷ 2 ∷ 3 ∷ [] , 4 ∷ 5 ∷ 6 ∷ [])
test₂ = refl
另外,像≤-refl
和≤-step
这样的函数在标准库的某个地方,但我懒得搜索了。
我
open import Function
open import Data.Nat.Base
open import Data.Product renaming (map to pmap)
open import Data.List.Base
open import Data.Vec hiding (split)
floyd : ∀ {A : Set}
-> (k : ℕ -> ℕ)
-> (∀ {n} -> Vec A (k (suc n)) -> Vec A (suc (k n)))
-> ∀ n
-> Vec A (k n)
-> List A × List A
floyd k u 0 xs = [] , toList xs
floyd k u 1 xs with u xs
... | x ∷ xs' = x ∷ [] , toList xs'
floyd k u (suc (suc n)) xs with u xs
... | x ∷ xs' = pmap (x ∷_) id (floyd (k ∘ suc) u n xs')
split : ∀ {A : Set} -> List A -> List A × List A
split xs = floyd id id (length xs) (fromList xs)
open import Relation.Binary.PropositionalEquality
test₁ : split (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ []) ≡ (1 ∷ 2 ∷ 3 ∷ [] , 4 ∷ 5 ∷ [])
test₁ = refl
test₂ : split (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ []) ≡ (1 ∷ 2 ∷ 3 ∷ [] , 4 ∷ 5 ∷ 6 ∷ [])
test₂ = refl
这部分基于下面评论中 Benjamin Hodgson 的建议。