如何将带有日期时间的 DataFrame 列拆分为两列:一列包含日期,另一列包含一天中的时间?
How can I split a DataFrame column with datetimes into two columns: one with dates and one with times of the day?
我有一个名为 data
的数据框,其中有一列 Dates
像这样,
Dates
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00
我知道如何向数据框添加一列,但如何将 Dates
划分为
Day Time
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00
如果你的系列是s
,那么这将创建这样一个DataFrame:
pd.DataFrame({
'date': pd.to_datetime(s).dt.date,
'time': pd.to_datetime(s).dt.time})
因为一旦你使用 pd.to_datetime
转换系列,那么 dt
成员就可以用来提取部分。
例子
import pandas as pd
s = pd.Series(['2015-05-13 23:53:00', '2015-05-13 23:53:00'])
>>> pd.DataFrame({
'date': pd.to_datetime(s).dt.date,
'time': pd.to_datetime(s).dt.time})
date time
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
如果您的 Dates
列是字符串:
data['Day'], data['Time'] = zip(*data.Dates.str.split())
>>> data
Dates Day Time
0 2015-05-13 23:53:00 2015-05-13 23:53:00
1 2015-05-13 23:53:00 2015-05-13 23:53:00
2 2015-05-13 23:33:00 2015-05-13 23:33:00
3 2015-05-13 23:33:00 2015-05-13 23:33:00
4 2015-05-13 23:33:00 2015-05-13 23:33:00
如果是时间戳:
data['Day'], data['Time'] = zip(*[(d.date(), d.time()) for d in data.Dates])
如果列 Dates
的类型是字符串,则按 to_datetime
. Then you can use dt.date
, dt.time
and last drop
原始列 Dates
:
转换
print df['Dates'].dtypes
object
print type(df.at[0, 'Dates'])
<type 'str'>
df['Dates'] = pd.to_datetime(df['Dates'])
print df['Dates'].dtypes
datetime64[ns]
print df
Dates
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00
df['Date'] = df['Dates'].dt.date
df['Time'] = df['Dates'].dt.time
df = df.drop('Dates', axis=1)
print df
Date Time
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00
attrgetter
+ pd.concat
+ join
您可以使用 operator.attrgetter
和 pd.concat
将任意数量的 datetime
属性作为单独的系列添加到您的数据框:
from operator import attrgetter
fields = ['date', 'time']
df = df.join(pd.concat(attrgetter(*fields)(df['Date'].dt), axis=1, keys=fields))
print(df)
Date date time
0 2015-05-13 23:53:00 2015-05-13 23:53:00
1 2015-01-13 15:23:00 2015-01-13 15:23:00
2 2016-01-13 03:33:00 2016-01-13 03:33:00
3 2018-02-13 20:13:25 2018-02-13 20:13:25
4 2017-05-12 06:52:00 2017-05-12 06:52:00
我有一个名为 data
的数据框,其中有一列 Dates
像这样,
Dates
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00
我知道如何向数据框添加一列,但如何将 Dates
划分为
Day Time
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00
如果你的系列是s
,那么这将创建这样一个DataFrame:
pd.DataFrame({
'date': pd.to_datetime(s).dt.date,
'time': pd.to_datetime(s).dt.time})
因为一旦你使用 pd.to_datetime
转换系列,那么 dt
成员就可以用来提取部分。
例子
import pandas as pd
s = pd.Series(['2015-05-13 23:53:00', '2015-05-13 23:53:00'])
>>> pd.DataFrame({
'date': pd.to_datetime(s).dt.date,
'time': pd.to_datetime(s).dt.time})
date time
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
如果您的 Dates
列是字符串:
data['Day'], data['Time'] = zip(*data.Dates.str.split())
>>> data
Dates Day Time
0 2015-05-13 23:53:00 2015-05-13 23:53:00
1 2015-05-13 23:53:00 2015-05-13 23:53:00
2 2015-05-13 23:33:00 2015-05-13 23:33:00
3 2015-05-13 23:33:00 2015-05-13 23:33:00
4 2015-05-13 23:33:00 2015-05-13 23:33:00
如果是时间戳:
data['Day'], data['Time'] = zip(*[(d.date(), d.time()) for d in data.Dates])
如果列 Dates
的类型是字符串,则按 to_datetime
. Then you can use dt.date
, dt.time
and last drop
原始列 Dates
:
print df['Dates'].dtypes
object
print type(df.at[0, 'Dates'])
<type 'str'>
df['Dates'] = pd.to_datetime(df['Dates'])
print df['Dates'].dtypes
datetime64[ns]
print df
Dates
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00
df['Date'] = df['Dates'].dt.date
df['Time'] = df['Dates'].dt.time
df = df.drop('Dates', axis=1)
print df
Date Time
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00
attrgetter
+ pd.concat
+ join
您可以使用 operator.attrgetter
和 pd.concat
将任意数量的 datetime
属性作为单独的系列添加到您的数据框:
from operator import attrgetter
fields = ['date', 'time']
df = df.join(pd.concat(attrgetter(*fields)(df['Date'].dt), axis=1, keys=fields))
print(df)
Date date time
0 2015-05-13 23:53:00 2015-05-13 23:53:00
1 2015-01-13 15:23:00 2015-01-13 15:23:00
2 2016-01-13 03:33:00 2016-01-13 03:33:00
3 2018-02-13 20:13:25 2018-02-13 20:13:25
4 2017-05-12 06:52:00 2017-05-12 06:52:00