快速逐字节替换 if

Fast byte-wise replace if

我有一个函数可以将二进制数据从一个区域复制到另一个区域,但前提是字节与特定值不同。这是一个代码示例:

void copy_if(char* src, char* dest, size_t size, char ignore)
{
  for (size_t i = 0; i < size; ++i)
  {
    if (src[i] != ignore)
      dest[i] = src[i];
  }
}

问题是这对我目前的需要来说太慢了。有没有办法以更快的方式获得相同的结果?

更新: 根据答案,我尝试了两种新的实现方式:

void copy_if_vectorized(const uint8_t* src, uint8_t* dest, size_t size, char ignore)
{
    for (size_t i = 0; i < size; ++i)
    {
        char temps = src[i];
        char tempd = dest[i];
        dest[i] = temps == ignore ? tempd : temps;
    }
}

void copy_if_SSE(const uint8_t* src, uint8_t* dest, size_t size, uint8_t ignore)
{
    const __m128i vignore = _mm_set1_epi8(ignore);

    size_t i;

    for (i = 0; i + 16 <= size; i += 16)
    {
        __m128i v = _mm_loadu_si128((__m128i *)&src[i]);
        __m128i vmask = _mm_cmpeq_epi8(v, vignore);
        vmask = _mm_xor_si128(vmask, _mm_set1_epi8(-1));
        _mm_maskmoveu_si128(v, vmask, (char *)&dest[i]);
    }
    for (; i < size; ++i)
    {
        if (src[i] != ignore)
            dest[i] = src[i];
    }

}

我得到了以下结果:

Naive: 
Duration: 2.04844s
Vectorized: 
Pass: PASS
Duration: 3.18553s
SIMD: 
Pass: PASS
Duration: 0.481888s

我想我的编译器无法矢量化(最后一个 MSVC),但是 SIMD 解决方案已经足够好了,谢谢!

更新(之二) 我设法使用一些 pragma 指令对我的编译 (MSVC) 进行矢量化,实际上它比 SIMD 更快,这是最终代码:

void copy_if_vectorized(const uint8_t* src, uint8_t* dest, size_t size, char ignore)
{

#pragma loop(hint_parallel(0))
#pragma loop(ivdep)

for (int i = 0; i < size; ++i) // Sadly no parallelization if i is unsigned, but more than 2Go of data is very unlikely
{
    char temps = src[i];
    char tempd = dest[i];
    dest[i] = temps == ignore ? tempd : temps;
}
}

以下将是一个改进,尽管编译器可以自行设计。

void copy_if(char* src, char* dest, size_t size, char ignore)
{
  while (size--)
  {
    if (*src != ignore)
      *dest = *src;
    src++; dest++;
  }
}

gcc 向量化以下代码:

#include <stddef.h>
void copy_if(char* src, char* dest, size_t size, char ignore)
{
  for (size_t i = 0; i < size; ++i)
  {
    char temps = src[i];
    char tempd = dest[i];
    dest[i] = temps == ignore ? tempd : temps;
  }
}

请注意,从- 加载和对dest[i] 的赋值都是无条件的,因此编译器不受禁止在多线程程序中发明存储的限制。

编辑一个不太古老的编译器和处理器,以及 godbolt 链接:

x86-64 gcc 11.1 compiles 下面的代码 -O3 -mavx512f -mavx512bw,产生一次处理 64 字节的对齐循环:

.L5:
        vmovdqu8        (%rdi,%rax), %zmm2
        vpcmpb  , %zmm0, %zmm2, %k1
        vmovdqu8        %zmm2, (%rsi,%rax){%k1}
        addq    , %rax
        cmpq    %rax, %r8
        jne     .L5

此编译器还为 gcc -std=gnu11 -O3 -mavx2 执行 well,一次处理 32 个字节:

.L5:
        vpcmpeqb        (%rdi,%rax), %ymm1, %ymm0
        vmovdqu (%rdi,%rax), %ymm2
        vpblendvb       %ymm0, (%rsi,%rax), %ymm2, %ymm0
        vmovdqu %ymm0, (%rsi,%rax)
        addq    , %rax
        cmpq    %rax, %r8
        jne     .L5

In general, modern compilers do well 适用于具有向量单元的任何处理器架构。

旧编译器(gcc 4.8.4),旧处理器(无 AVX512),旧答案:

对于 -march=core-avx2,生成的程序集包含此矢量化循环,一次处理 32 个字节:

.L9:
    vmovdqu (%rdi,%rcx), %ymm1
    addq    , %r10
    vmovdqu (%rsi,%rcx), %ymm2
    vpcmpeqb    %ymm0, %ymm1, %ymm3
    vpblendvb   %ymm3, %ymm2, %ymm1, %ymm1
    vmovdqu %ymm1, (%rsi,%rcx)
    addq    , %rcx
    cmpq    %r10, %r8
    ja  .L9

对于通用 x86-64,生成的程序集包含此矢量化循环,一次处理 16 个字节:

.L9:
    movdqu  (%rdi,%r8), %xmm3
    addq    , %r10
    movdqa  %xmm3, %xmm1
    movdqu  (%rsi,%r8), %xmm2
    pcmpeqb %xmm0, %xmm1
    pand    %xmm1, %xmm2
    pandn   %xmm3, %xmm1
    por %xmm2, %xmm1
    movdqu  %xmm1, (%rsi,%r8)
    addq    , %r8
    cmpq    %r9, %r10
    jb  .L9

对于 armv7l-neon,clang-3.7 生成以下循环,一次处理 16 个字节:

.LBB0_9:                                @ %vector.body
                                        @ =>This Inner Loop Header: Depth=1
        vld1.8  {d18, d19}, [r5]!
        subs.w  lr, lr, #16
        vceq.i8 q10, q9, q8
        vld1.8  {d22, d23}, [r4]
        vbsl    q10, q11, q9
        vst1.8  {d20, d21}, [r4]!
        bne     .LBB0_9

因此,代码不仅比汇编或内部函数更具可读性,而且 可移植 到多种体系结构和编译器。新的体系结构和指令集扩展可以通过重新编译轻松使用。

这是一个使用 SSE2 内参来利用 maskmovdqu 指令的示例。 SIMD 版本似乎 运行 在 Haswell CPU 上是原始版本速度的大约 2 倍 CPU(使用 clang 编译的代码):

    #include <stdio.h>
    #include <string.h>
    #include <emmintrin.h>  // SSE2
    #include <sys/time.h>   // gettimeofday

    void copy_if_ref(const uint8_t* src, uint8_t* dest, size_t size, uint8_t ignore)
    {
        for (size_t i = 0; i < size; ++i)
        {
            if (src[i] != ignore)
                dest[i] = src[i];
        }
    }

    void copy_if_SSE(const uint8_t* src, uint8_t* dest, size_t size, uint8_t ignore)
    {
        const __m128i vignore = _mm_set1_epi8(ignore);

        size_t i;

        for (i = 0; i + 16 <= size; i += 16)
        {
            __m128i v = _mm_loadu_si128((__m128i *)&src[i]);
            __m128i vmask = _mm_cmpeq_epi8(v, vignore);
            vmask = _mm_xor_si128(vmask, _mm_set1_epi8(-1));
            _mm_maskmoveu_si128 (v, vmask, (char *)&dest[i]);
        }
        for ( ; i < size; ++i)
        {
            if (src[i] != ignore)
                dest[i] = src[i];
        }
    }

    #define TIME_IT(init, copy_if, src, dest, size, ignore) \
    do { \
        const int kLoops = 1000; \
        struct timeval t0, t1; \
        double t_ms = 0.0; \
     \
        for (int i = 0; i < kLoops; ++i) \
        { \
            init; \
            gettimeofday(&t0, NULL); \
            copy_if(src, dest, size, ignore); \
            gettimeofday(&t1, NULL); \
            t_ms += ((double)(t1.tv_sec - t0.tv_sec) + (double)(t1.tv_usec - t0.tv_usec) * 1.0e-6) * 1.0e3; \
        } \
        printf("%s: %.3g ns / element\n", #copy_if, t_ms * 1.0e6 / (double)(kLoops * size)); \
    } while (0)

    int main()
    {
        const size_t N = 10000000;

        uint8_t *src = malloc(N);
        uint8_t *dest_ref = malloc(N);
        uint8_t *dest_init = malloc(N);
        uint8_t *dest_test = malloc(N);

        for (size_t i = 0; i < N; ++i)
        {
            src[i] = (uint8_t)rand();
            dest_init[i] = (uint8_t)rand();
        }

        memcpy(dest_ref, dest_init, N);
        copy_if_ref(src, dest_ref, N, 0x42);

        memcpy(dest_test, dest_init, N);
        copy_if_SSE(src, dest_test, N, 0x42);
        printf("copy_if_SSE: %s\n", memcmp(dest_ref, dest_test, N) == 0 ? "PASS" : "FAIL");

        TIME_IT(memcpy(dest_test, dest_init, N), copy_if_ref, src, dest_ref, N, 0x42);
        TIME_IT(memcpy(dest_test, dest_init, N), copy_if_SSE, src, dest_test, N, 0x42);

        return 0;
    }

编译测试:

$ gcc -Wall -msse2 -O3 copy_if.c && ./a.out 
copy_if_SSE: PASS
copy_if_ref: 0.416 ns / element
copy_if_SSE: 0.239 ns / element

(注意:这个答案的早期版本在时间代码中有一个 16 的杂散因子,所以早期的数字比它们应该的高 16 倍。)


更新

受@EOF 的解决方案和编译器生成的代码的启发,我尝试了一种不同的 SSE4 方法,并获得了更好的结果:

#include <stdio.h>
#include <string.h>
#include <smmintrin.h>  // SSE4
#include <sys/time.h>   // gettimeofday

void copy_if_ref(const uint8_t* src, uint8_t* dest, size_t size, uint8_t ignore)
{
    for (size_t i = 0; i < size; ++i)
    {
        if (src[i] != ignore)
            dest[i] = src[i];
    }
}

void copy_if_EOF(const uint8_t* src, uint8_t* dest, size_t size, uint8_t ignore)
{
    for (size_t i = 0; i < size; ++i)
    {
        char temps = src[i];
        char tempd = dest[i];
        dest[i] = temps == ignore ? tempd : temps;
    }
}

void copy_if_SSE(const uint8_t* src, uint8_t* dest, size_t size, uint8_t ignore)
{
    const __m128i vignore = _mm_set1_epi8(ignore);

    size_t i;

    for (i = 0; i + 16 <= size; i += 16)
    {
        __m128i vsrc = _mm_loadu_si128((__m128i *)&src[i]);
        __m128i vdest = _mm_loadu_si128((__m128i *)&dest[i]);
        __m128i vmask = _mm_cmpeq_epi8(vsrc, vignore);
        vdest = _mm_blendv_epi8(vsrc, vdest, vmask);
        _mm_storeu_si128 ((__m128i *)&dest[i], vdest);
    }
    for ( ; i < size; ++i)
    {
        if (src[i] != ignore)
            dest[i] = src[i];
    }
}

#define TIME_IT(init, copy_if, src, dest, size, ignore) \
do { \
    const int kLoops = 1000; \
    struct timeval t0, t1; \
    double t_ms = 0.0; \
 \
    for (int i = 0; i < kLoops; ++i) \
    { \
        init; \
        gettimeofday(&t0, NULL); \
        copy_if(src, dest, size, ignore); \
        gettimeofday(&t1, NULL); \
        t_ms += ((double)(t1.tv_sec - t0.tv_sec) + (double)(t1.tv_usec - t0.tv_usec) * 1.0e-6) * 1.0e3; \
    } \
    printf("%s: %.3g ns / element\n", #copy_if, t_ms * 1.0e6 / (double)(kLoops * size)); \
} while (0)

int main()
{
    const size_t N = 10000000;

    uint8_t *src = malloc(N);
    uint8_t *dest_ref = malloc(N);
    uint8_t *dest_init = malloc(N);
    uint8_t *dest_test = malloc(N);

    for (size_t i = 0; i < N; ++i)
    {
        src[i] = (uint8_t)rand();
        dest_init[i] = (uint8_t)rand();
    }

    memcpy(dest_ref, dest_init, N);
    copy_if_ref(src, dest_ref, N, 0x42);

    memcpy(dest_test, dest_init, N);
    copy_if_EOF(src, dest_test, N, 0x42);
    printf("copy_if_EOF: %s\n", memcmp(dest_ref, dest_test, N) == 0 ? "PASS" : "FAIL");

    memcpy(dest_test, dest_init, N);
    copy_if_SSE(src, dest_test, N, 0x42);
    printf("copy_if_SSE: %s\n", memcmp(dest_ref, dest_test, N) == 0 ? "PASS" : "FAIL");

    TIME_IT(memcpy(dest_test, dest_init, N), copy_if_ref, src, dest_ref, N, 0x42);
    TIME_IT(memcpy(dest_test, dest_init, N), copy_if_EOF, src, dest_test, N, 0x42);
    TIME_IT(memcpy(dest_test, dest_init, N), copy_if_SSE, src, dest_test, N, 0x42);

    return 0;
}

编译测试:

$ gcc -Wall -msse4 -O3 copy_if_2.c && ./a.out 
copy_if_EOF: PASS
copy_if_SSE: PASS
copy_if_ref: 0.419 ns / element
copy_if_EOF: 0.114 ns / element
copy_if_SSE: 0.114 ns / element

结论:虽然从功能的角度来看_mm_maskmoveu_si128似乎是解决这个问题的好方法,但它似乎不如使用显式加载那么有效,掩蔽和商店。此外,在这种情况下,编译器生成的代码(参见@EOF 的回答)似乎与显式编码的 SIMD 一样快。

如果忽略的频率不太高,下面的 memcpy 代码可能会有所帮助。

size_t copy_if(char* src, char* dest, size_t size, char ignore)
{
    size_t i=0, count =0 , res= 0;
    while (count < size)
    {
    while (*src != ignore){
        count++;
        if (count > size)
             break;
        src++;
        i++;
        res++;
    }
    count++;
    if (i> 0){
        memcpy(dest,src-i, i);
        dest += i;
    }
    i = 0;
    src++;
  }
return res;
}