Spring 批处理:Assemble 一个作业而不是配置它(可扩展作业配置)

Spring batch : Assemble a job rather than configuring it (Extensible job configuration)

背景

我正在设计一个文件读取层,它可以读取分隔文件并将其加载到 List。我决定使用 Spring Batch,因为它提供了很多可伸缩性选项,我可以根据文件的大小对不同的文件集加以利用。

要求

  1. 我想设计一个可用于读取任何分隔文件的通用作业 API。
  2. 应该有一个单独的作业结构用于解析每个分隔文件。例如,如果系统需要读取 5 个文件,则将有 5 个作业(每个文件一个)。 5 个作业彼此不同的唯一方式是它们将使用不同的 FieldSetMapper、列名称、目录路径和其他缩放参数,例如 commit-intervalthrottle-limit
  3. 这个API的用户应该不需要配置一个Spring 在系统中引入新文件类型时自行执行批处理作业、步骤、分块、分区等。
  4. 用户需要做的就是提供作业要使用的FieldsetMapper以及commit-intervalthrottle-limit和每种类型文件所在的目录被放置。
  5. 每个文件将有一个预定义的目录。每个目录可以包含多个相同类型和格式的文件。 MultiResourcePartioner 将用于查看目录内部。分区数=目录文件数。

我的要求是构建一个 Spring 批处理基础设施,为我提供一个独特的工作,一旦我拥有了构成该工作的零碎部分,我就可以启动它。

我的解决方案:

我创建了一个抽象配置 class,它将通过具体配置 class 扩展(每个要读取的文件将有 1 个具体 class)。

    @Configuration
    @EnableBatchProcessing
    public abstract class AbstractFileLoader<T> {

    private static final String FILE_PATTERN = "*.dat";

    @Autowired
    JobBuilderFactory jobs;

    @Autowired
    ResourcePatternResolver resourcePatternResolver;

    public final Job createJob(Step s1, JobExecutionListener listener) {
        return jobs.get(this.getClass().getSimpleName())
                .incrementer(new RunIdIncrementer()).listener(listener)
                .start(s1).build();
    }

    public abstract Job loaderJob(Step s1, JobExecutionListener listener);

    public abstract FieldSetMapper<T> getFieldSetMapper();

    public abstract String getFilesPath();

    public abstract String[] getColumnNames();

    public abstract int getChunkSize();

    public abstract int getThrottleLimit();

    @Bean
    @StepScope
    @Value("#{stepExecutionContext['fileName']}")
    public FlatFileItemReader<T> reader(String file) {
        FlatFileItemReader<T> reader = new FlatFileItemReader<T>();
        String path = file.substring(file.indexOf(":") + 1, file.length());
        FileSystemResource resource = new FileSystemResource(path);
        reader.setResource(resource);
        DefaultLineMapper<T> lineMapper = new DefaultLineMapper<T>();
        lineMapper.setFieldSetMapper(getFieldSetMapper());
        DelimitedLineTokenizer tokenizer = new DelimitedLineTokenizer(",");
        tokenizer.setNames(getColumnNames());
        lineMapper.setLineTokenizer(tokenizer);
        reader.setLineMapper(lineMapper);
        reader.setLinesToSkip(1);
        return reader;
    }

    @Bean
    public ItemProcessor<T, T> processor() {
        // TODO add transformations here
        return null;
    }

    @Bean
    @JobScope
    public ListItemWriter<T> writer() {
        ListItemWriter<T> writer = new ListItemWriter<T>();
        return writer;
    }

    @Bean
    @JobScope
    public Step readStep(StepBuilderFactory stepBuilderFactory,
            ItemReader<T> reader, ItemWriter<T> writer,
            ItemProcessor<T, T> processor, TaskExecutor taskExecutor) {

        final Step readerStep = stepBuilderFactory
                .get(this.getClass().getSimpleName() + " ReadStep:slave")
                .<T, T> chunk(getChunkSize()).reader(reader)
                .processor(processor).writer(writer).taskExecutor(taskExecutor)
                .throttleLimit(getThrottleLimit()).build();

        final Step partitionedStep = stepBuilderFactory
                .get(this.getClass().getSimpleName() + " ReadStep:master")
                .partitioner(readerStep)
                .partitioner(
                        this.getClass().getSimpleName() + " ReadStep:slave",
                        partitioner()).taskExecutor(taskExecutor).build();

        return partitionedStep;

    }

    /*
     * @Bean public TaskExecutor taskExecutor() { return new
     * SimpleAsyncTaskExecutor(); }
     */

    @Bean
    @JobScope
    public Partitioner partitioner() {
        MultiResourcePartitioner partitioner = new MultiResourcePartitioner();
        Resource[] resources;
        try {
            resources = resourcePatternResolver.getResources("file:"
                    + getFilesPath() + FILE_PATTERN);
        } catch (IOException e) {
            throw new RuntimeException(
                    "I/O problems when resolving the input file pattern.", e);
        }
        partitioner.setResources(resources);
        return partitioner;
    }

    @Bean
    @JobScope
    public JobExecutionListener listener(ListItemWriter<T> writer) {
        return new JobCompletionNotificationListener<T>(writer);
    }

    /*
     * Use this if you want the writer to have job scope (JIRA BATCH-2269). Also
     * change the return type of writer to ListItemWriter for this to work.
     */
    @Bean
    public TaskExecutor taskExecutor() {
        return new SimpleAsyncTaskExecutor() {
            @Override
            protected void doExecute(final Runnable task) {
                // gets the jobExecution of the configuration thread
                final JobExecution jobExecution = JobSynchronizationManager
                        .getContext().getJobExecution();
                super.doExecute(new Runnable() {
                    public void run() {
                        JobSynchronizationManager.register(jobExecution);

                        try {
                            task.run();
                        } finally {
                            JobSynchronizationManager.close();
                        }
                    }
                });
            }
        };
    }

}

假设我必须阅读发票数据以便进行讨论。因此,我可以扩展上面的 class 来创建 InvoiceLoader

@Configuration
public class InvoiceLoader extends AbstractFileLoader<Invoice>{

    private class InvoiceFieldSetMapper implements FieldSetMapper<Invoice> {

        public Invoice mapFieldSet(FieldSet f) {
            Invoice invoice = new Invoice();
            invoice.setNo(f.readString("INVOICE_NO");
            return e;
        }
    }

    @Override
    public FieldSetMapper<Invoice> getFieldSetMapper() {
        return new InvoiceFieldSetMapper();
    }

    @Override
    public String getFilesPath() {
        return "I:/CK/invoices/partitions/";
    }

    @Override
    public String[] getColumnNames() {
        return new String[] { "INVOICE_NO", "DATE"};
    }


    @Override
    @Bean(name="invoiceJob")
    public Job loaderJob(Step s1,
            JobExecutionListener listener) {
        return createJob(s1, listener);
    }

    @Override
    public int getChunkSize() {
        return 25254;
    }

    @Override
    public int getThrottleLimit() {
        return 8;
    }

}

假设我还有一个名为 Inventory 的 class 扩展 AbstractFileLoader.

在应用程序启动时,我可以按如下方式加载这两个注释配置:

AbstractApplicationContext context1 = new   AnnotationConfigApplicationContext(InvoiceLoader.class, InventoryLoader.class);

在我的应用程序的其他地方,两个不同的线程可以按如下方式启动作业:

线程 1:

    JobLauncher jobLauncher1 = context1.getBean(JobLauncher.class);
    Job job1 = context1.getBean("invoiceJob", Job.class);
    JobExecution jobExecution = jobLauncher1.run(job1, jobParams1);

线程 2:

    JobLauncher jobLauncher1 = context1.getBean(JobLauncher.class);
    Job job1 = context1.getBean("inventoryJob", Job.class);
    JobExecution jobExecution = jobLauncher1.run(job1, jobParams1);

这种方法的优点是每次有一个新文件要读取时,developer/user 所要做的就是 subclass AbstractFileLoader 并实现所需的抽象方法,无需深入了解如何 assemble 工作的细节。

问题:

  1. 我是 Spring 批处理的新手,所以我可能忽略了这种方法的一些不太明显的问题,例如 Spring 批处理中的共享内部对象可能会导致两个作业 运行一起失败或明显的问题,例如 bean 的范围。
  2. 有没有更好的方法来实现我的objective?
  3. @Value("#{stepExecutionContext['fileName']}")fileName 属性总是被赋值为 I:/CK/invoices/partitions/,这是 InvoiceLoadergetPath 方法返回的值,甚至虽然 getPathmethod inInventoryLoader`returns 是不同的值。

一个选项是将它们作为作业参数传递。例如:

@Bean
Job job() {
    jobs.get("myJob").start(step1(null)).build()
}

@Bean
@JobScope
Step step1(@Value('#{jobParameters["commitInterval"]}') commitInterval) {
    steps.get('step1')
            .chunk((int) commitInterval)
            .reader(new IterableItemReader(iterable: [1, 2, 3, 4], name: 'foo'))
            .writer(writer(null))
            .build()
}

@Bean
@JobScope
ItemWriter writer(@Value('#{jobParameters["writerClass"]}') writerClass) {
    applicationContext.classLoader.loadClass(writerClass).newInstance()
}

MyWriter:

class MyWriter implements ItemWriter<Integer> {

    @Override
    void write(List<? extends Integer> items) throws Exception {
        println "Write $items"
    }
}

然后执行:

def jobExecution = launcher.run(ctx.getBean(Job), new JobParameters([
        commitInterval: new JobParameter(3),
        writerClass: new JobParameter('MyWriter'), ]))

输出为:

INFO: Executing step: [step1]
Write [1, 2, 3]
Write [4]
Feb 24, 2016 2:30:22 PM org.springframework.batch.core.launch.support.SimpleJobLauncher run
INFO: Job: [SimpleJob: [name=myJob]] completed with the following parameters: [{commitInterval=3, writerClass=MyWriter}] and the following status: [COMPLETED]
Status is: COMPLETED, job execution id 0
  #1 step1 COMPLETED

完整示例 here.