Select 顶行按值排序后融化的数据
Select top row melted data after sorting by value
我有以下熔化数据:
dat.melt <- structure(list(CellTypes = structure(c(62L, 35L, 73L, 45L, 14L,
22L, 46L, 13L, 68L, 21L, 1L, 10L, 64L, 24L, 72L, 58L, 51L, 9L,
60L, 37L, 34L, 49L, 33L, 2L, 50L, 32L, 11L, 52L, 44L, 66L, 8L,
5L, 47L, 59L, 53L, 7L, 6L, 77L, 75L, 17L, 27L, 61L, 20L, 18L,
19L, 16L, 54L, 15L, 41L, 3L, 63L, 48L, 57L, 43L, 70L, 40L, 12L,
76L, 74L, 29L, 28L, 25L, 30L, 42L, 39L, 56L, 4L, 67L, 71L, 31L,
36L, 23L, 38L, 69L, 55L, 26L, 65L, 62L, 35L, 73L, 45L, 14L, 22L,
46L, 13L, 68L, 21L, 1L, 10L, 64L, 24L, 72L, 58L, 51L, 9L, 60L,
37L, 34L, 49L, 33L, 2L, 50L, 32L, 11L, 52L, 44L, 66L, 8L, 5L,
47L, 59L, 53L, 7L, 6L, 77L, 75L, 17L, 27L, 61L, 20L, 18L, 19L,
16L, 54L, 15L, 41L, 3L, 63L, 48L, 57L, 43L, 70L, 40L, 12L, 76L,
74L, 29L, 28L, 25L, 30L, 42L, 39L, 56L, 4L, 67L, 71L, 31L, 36L,
23L, 38L, 69L, 55L, 26L, 65L), .Label = c("3T3-L1", "Adipose Brown",
"Adipose White", "Adrenal Gland", "B Cells (GL7 neg; Alum)",
"B Cells (GL7 neg; KLH)", "B Cells (GL7 pos; Alum)", "B Cells (GL7 pos; KLH)",
"B Cells Marginal Zone", "B220+ Dend. Cells", "BA/F3", "Bladder",
"Bone", "Bone Marrow", "C2C12", "CD4+ SP Thymoctyes", "CD4+ T cells",
"CD4+/CD8+ DP Thymocytes", "CD8+ SP Thymocytes", "CD8+ T cells",
"CD8a+ Dend. Cells Lymphoid", "CD8a+ Dend. Cells Myeloid", "Ciliary Bodies",
"Common Myeloid Progenitor", "Cornea", "Dorsal Root Ganglia",
"Embryonic Fibroblasts", "Embryonic Stem Line Bruce4 P13", "Embryonic Stem Line V26 2 P16",
"Epidermis", "Eyecup", "Follicular B Cells", "Foxp3+ Tcells",
"Granulo Monoprogenitor", "Granulocytes", "Heart", "Hematopoietic Stem Cells",
"Iris", "Kidney", "Lacrimal Gland", "Large Intestine", "Lens",
"Liver", "Lung", "Lymph Nodes", "Macrophage Peri ", "Mammary Gland",
"Mammary Gland Non-Lactating", "Mast Cells", "Mast Cells IgE",
"Mast Cells IgE 1hr", "Mast Cells IgE 6hr", "Megaerythrocyte Progenitor",
"mIMCD-3 Cells", "MIN6 cells", "Neuro2a Neuroblastoma Cells",
"NIH 3T3", "NK Cells", "Osteoblast Day14", "Osteoblast Day21",
"Osteoblast Day5", "Osteoclasts", "Ovary", "Pancreas", "Pituitary",
"Placenta", "Prostate", "RAW 264.7 Cells", "Retinal Pigment Epithelium",
"Salivary Gland", "Skeletal Muscle", "Small Intestine", "Spleen",
"Stem Cells C3H/10T1/2", "Stomach", "Umbilical Cord", "Uterus"
), class = "factor"), variable = structure(c(1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L), .Label = c("LPS_IV_SP", "MPL_IV_SP"), class = "factor"),
value = c(3.647, 33.629, 17.838, 33.917, 29.66, 31.694, 32.603,
24.152, 19.969, 24.012, 40.101, 12.682, 0.323, 12.846, 5.087,
11.707, 16.682, 7.71, 22.472, 10.21, 10.109, 12.643, 12.623,
1.48, 13.075, 5.042, 12.19, 11.691, 15.24, 17.073, 5.854,
5.188, 11.983, 18.679, 6.406, 4.474, 5.445, 8.144, 0.739,
3.652, 14.232, 17.1, 2.603, 1.762, 1.993, 3.475, 10.305,
7.457, 1.189, 2.895, 4.181, 3.06, 5.885, 3.063, 2.532, 1.662,
3.86, 5.094, 5.916, 4.553, 3.703, 2.546, 0.764, 0.597, 1.39,
2.933, 0.665, 0.121, 0.257, 0.764, 0.196, 0.208, 0.232, 0.001,
0.004, 0.035, 0.036, 56.156, 53.485, 48.206, 45.975, 41.067,
40.581, 38.155, 33.009, 29.468, 29.219, 27.945, 19.165, 15.985,
15.682, 15.077, 14.72, 13.856, 13.576, 12.914, 12.77, 12.577,
12.526, 11.05, 10.532, 10.008, 9.942, 9.238, 8.67, 8.237,
7.938, 7.819, 7.55, 7.349, 7.217, 7.146, 6.158, 5.852, 5.368,
5.328, 5.126, 4.887, 4.767, 4.24, 3.858, 3.816, 3.676, 3.318,
3.118, 2.459, 2.269, 2.266, 2.201, 1.467, 1.418, 1.368, 1.267,
1.077, 1.022, 0.835, 0.667, 0.655, 0.609, 0.53, 0.452, 0.24,
0.239, 0.211, 0.124, 0.084, 0.05, 0.028, 0.024, 0.016, 0.007,
0.006, 0.003, 0.002)), row.names = c(NA, -154L), .Names = c("CellTypes",
"variable", "value"), class = "data.frame")
看起来像这样:
> tail(dat.melt,n=5L)
CellTypes variable value
150 Iris MPL_IV_SP 0.016
151 Retinal Pigment Epithelium MPL_IV_SP 0.007
152 MIN6 cells MPL_IV_SP 0.006
153 Dorsal Root Ganglia MPL_IV_SP 0.003
154 Pituitary MPL_IV_SP 0.002
> head(dat.melt,n=5L)
CellTypes variable value
1 Osteoclasts LPS_IV_SP 3.647
2 Granulocytes LPS_IV_SP 33.629
3 Spleen LPS_IV_SP 17.838
4 Lymph Nodes LPS_IV_SP 33.917
5 Bone Marrow LPS_IV_SP 29.660
>
对于每个变量 MPL_IV_SP
和 LPS_IV_SP
我想 select 前 5 行 ('cell type') 按值降序排列。我该怎么做?
我们可以使用top_n
library(dplyr)
dat.melt %>%
group_by(variable) %>%
top_n(5, value)
注意:在另一个答案中,没有 sort
ing 完成。但是,我可以理解有偏见的投票。
您也可以使用 data.table 包。下面是代码:
library(data.table)
dat.melt <- data.table(dat.melt)
dat.melt[, .SD[1:5], by=variable]
data.table的优点是比data.frame快。
我有以下熔化数据:
dat.melt <- structure(list(CellTypes = structure(c(62L, 35L, 73L, 45L, 14L,
22L, 46L, 13L, 68L, 21L, 1L, 10L, 64L, 24L, 72L, 58L, 51L, 9L,
60L, 37L, 34L, 49L, 33L, 2L, 50L, 32L, 11L, 52L, 44L, 66L, 8L,
5L, 47L, 59L, 53L, 7L, 6L, 77L, 75L, 17L, 27L, 61L, 20L, 18L,
19L, 16L, 54L, 15L, 41L, 3L, 63L, 48L, 57L, 43L, 70L, 40L, 12L,
76L, 74L, 29L, 28L, 25L, 30L, 42L, 39L, 56L, 4L, 67L, 71L, 31L,
36L, 23L, 38L, 69L, 55L, 26L, 65L, 62L, 35L, 73L, 45L, 14L, 22L,
46L, 13L, 68L, 21L, 1L, 10L, 64L, 24L, 72L, 58L, 51L, 9L, 60L,
37L, 34L, 49L, 33L, 2L, 50L, 32L, 11L, 52L, 44L, 66L, 8L, 5L,
47L, 59L, 53L, 7L, 6L, 77L, 75L, 17L, 27L, 61L, 20L, 18L, 19L,
16L, 54L, 15L, 41L, 3L, 63L, 48L, 57L, 43L, 70L, 40L, 12L, 76L,
74L, 29L, 28L, 25L, 30L, 42L, 39L, 56L, 4L, 67L, 71L, 31L, 36L,
23L, 38L, 69L, 55L, 26L, 65L), .Label = c("3T3-L1", "Adipose Brown",
"Adipose White", "Adrenal Gland", "B Cells (GL7 neg; Alum)",
"B Cells (GL7 neg; KLH)", "B Cells (GL7 pos; Alum)", "B Cells (GL7 pos; KLH)",
"B Cells Marginal Zone", "B220+ Dend. Cells", "BA/F3", "Bladder",
"Bone", "Bone Marrow", "C2C12", "CD4+ SP Thymoctyes", "CD4+ T cells",
"CD4+/CD8+ DP Thymocytes", "CD8+ SP Thymocytes", "CD8+ T cells",
"CD8a+ Dend. Cells Lymphoid", "CD8a+ Dend. Cells Myeloid", "Ciliary Bodies",
"Common Myeloid Progenitor", "Cornea", "Dorsal Root Ganglia",
"Embryonic Fibroblasts", "Embryonic Stem Line Bruce4 P13", "Embryonic Stem Line V26 2 P16",
"Epidermis", "Eyecup", "Follicular B Cells", "Foxp3+ Tcells",
"Granulo Monoprogenitor", "Granulocytes", "Heart", "Hematopoietic Stem Cells",
"Iris", "Kidney", "Lacrimal Gland", "Large Intestine", "Lens",
"Liver", "Lung", "Lymph Nodes", "Macrophage Peri ", "Mammary Gland",
"Mammary Gland Non-Lactating", "Mast Cells", "Mast Cells IgE",
"Mast Cells IgE 1hr", "Mast Cells IgE 6hr", "Megaerythrocyte Progenitor",
"mIMCD-3 Cells", "MIN6 cells", "Neuro2a Neuroblastoma Cells",
"NIH 3T3", "NK Cells", "Osteoblast Day14", "Osteoblast Day21",
"Osteoblast Day5", "Osteoclasts", "Ovary", "Pancreas", "Pituitary",
"Placenta", "Prostate", "RAW 264.7 Cells", "Retinal Pigment Epithelium",
"Salivary Gland", "Skeletal Muscle", "Small Intestine", "Spleen",
"Stem Cells C3H/10T1/2", "Stomach", "Umbilical Cord", "Uterus"
), class = "factor"), variable = structure(c(1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L), .Label = c("LPS_IV_SP", "MPL_IV_SP"), class = "factor"),
value = c(3.647, 33.629, 17.838, 33.917, 29.66, 31.694, 32.603,
24.152, 19.969, 24.012, 40.101, 12.682, 0.323, 12.846, 5.087,
11.707, 16.682, 7.71, 22.472, 10.21, 10.109, 12.643, 12.623,
1.48, 13.075, 5.042, 12.19, 11.691, 15.24, 17.073, 5.854,
5.188, 11.983, 18.679, 6.406, 4.474, 5.445, 8.144, 0.739,
3.652, 14.232, 17.1, 2.603, 1.762, 1.993, 3.475, 10.305,
7.457, 1.189, 2.895, 4.181, 3.06, 5.885, 3.063, 2.532, 1.662,
3.86, 5.094, 5.916, 4.553, 3.703, 2.546, 0.764, 0.597, 1.39,
2.933, 0.665, 0.121, 0.257, 0.764, 0.196, 0.208, 0.232, 0.001,
0.004, 0.035, 0.036, 56.156, 53.485, 48.206, 45.975, 41.067,
40.581, 38.155, 33.009, 29.468, 29.219, 27.945, 19.165, 15.985,
15.682, 15.077, 14.72, 13.856, 13.576, 12.914, 12.77, 12.577,
12.526, 11.05, 10.532, 10.008, 9.942, 9.238, 8.67, 8.237,
7.938, 7.819, 7.55, 7.349, 7.217, 7.146, 6.158, 5.852, 5.368,
5.328, 5.126, 4.887, 4.767, 4.24, 3.858, 3.816, 3.676, 3.318,
3.118, 2.459, 2.269, 2.266, 2.201, 1.467, 1.418, 1.368, 1.267,
1.077, 1.022, 0.835, 0.667, 0.655, 0.609, 0.53, 0.452, 0.24,
0.239, 0.211, 0.124, 0.084, 0.05, 0.028, 0.024, 0.016, 0.007,
0.006, 0.003, 0.002)), row.names = c(NA, -154L), .Names = c("CellTypes",
"variable", "value"), class = "data.frame")
看起来像这样:
> tail(dat.melt,n=5L)
CellTypes variable value
150 Iris MPL_IV_SP 0.016
151 Retinal Pigment Epithelium MPL_IV_SP 0.007
152 MIN6 cells MPL_IV_SP 0.006
153 Dorsal Root Ganglia MPL_IV_SP 0.003
154 Pituitary MPL_IV_SP 0.002
> head(dat.melt,n=5L)
CellTypes variable value
1 Osteoclasts LPS_IV_SP 3.647
2 Granulocytes LPS_IV_SP 33.629
3 Spleen LPS_IV_SP 17.838
4 Lymph Nodes LPS_IV_SP 33.917
5 Bone Marrow LPS_IV_SP 29.660
>
对于每个变量 MPL_IV_SP
和 LPS_IV_SP
我想 select 前 5 行 ('cell type') 按值降序排列。我该怎么做?
我们可以使用top_n
library(dplyr)
dat.melt %>%
group_by(variable) %>%
top_n(5, value)
注意:在另一个答案中,没有 sort
ing 完成。但是,我可以理解有偏见的投票。
您也可以使用 data.table 包。下面是代码:
library(data.table)
dat.melt <- data.table(dat.melt)
dat.melt[, .SD[1:5], by=variable]
data.table的优点是比data.frame快。