Numpy 仅按行打乱多维数组,保持列顺序不变

Numpy shuffle multidimensional array by row only, keep column order unchanged

如何仅在 Python 中按行打乱多维数组(因此不要打乱列)。

我正在寻找最有效的解决方案,因为我的矩阵非常庞大。是否也可以在原始数组上高效地执行此操作(以节省内存)?

示例:

import numpy as np
X = np.random.random((6, 2))
print(X)
Y = ???shuffle by row only not colls???
print(Y)

我现在期望的是原始矩阵:

[[ 0.48252164  0.12013048]
 [ 0.77254355  0.74382174]
 [ 0.45174186  0.8782033 ]
 [ 0.75623083  0.71763107]
 [ 0.26809253  0.75144034]
 [ 0.23442518  0.39031414]]

输出随机排列行而不是列,例如:

[[ 0.45174186  0.8782033 ]
 [ 0.48252164  0.12013048]
 [ 0.77254355  0.74382174]
 [ 0.75623083  0.71763107]
 [ 0.23442518  0.39031414]
 [ 0.26809253  0.75144034]]

您可以使用 numpy.random.shuffle().

This function only shuffles the array along the first axis of a multi-dimensional array. The order of sub-arrays is changed but their contents remains the same.

In [2]: import numpy as np                                                                                                                                                                                  

In [3]:                                                                                                                                                                                                     

In [3]: X = np.random.random((6, 2))                                                                                                                                                                        

In [4]: X                                                                                                                                                                                                   
Out[4]: 
array([[0.71935047, 0.25796155],
       [0.4621708 , 0.55140423],
       [0.22605866, 0.61581771],
       [0.47264172, 0.79307633],
       [0.22701656, 0.11927993],
       [0.20117207, 0.2754544 ]])

In [5]: np.random.shuffle(X)                                                                                                                                                                                

In [6]: X                                                                                                                                                                                                   
Out[6]: 
array([[0.71935047, 0.25796155],
       [0.47264172, 0.79307633],
       [0.4621708 , 0.55140423],
       [0.22701656, 0.11927993],
       [0.20117207, 0.2754544 ],
       [0.22605866, 0.61581771]])

对于其他功能,您还可以查看以下功能:

在 Numpy 的 1.20.0 版本中引入了函数 random.Generator.permuted

The new function differs from shuffle and permutation in that the subarrays indexed by an axis are permuted rather than the axis being treated as a separate 1-D array for every combination of the other indexes. For example, it is now possible to permute the rows or columns of a 2-D array.

您还可以将 np.random.permutation to generate random permutation of row indices and then index into the rows of X using np.takeaxis=0 一起使用。此外,np.take 有助于使用 out= 选项覆盖输入数组 X 本身,这将节省我们的内存。因此,实现看起来像这样 -

np.take(X,np.random.permutation(X.shape[0]),axis=0,out=X)

样本运行-

In [23]: X
Out[23]: 
array([[ 0.60511059,  0.75001599],
       [ 0.30968339,  0.09162172],
       [ 0.14673218,  0.09089028],
       [ 0.31663128,  0.10000309],
       [ 0.0957233 ,  0.96210485],
       [ 0.56843186,  0.36654023]])

In [24]: np.take(X,np.random.permutation(X.shape[0]),axis=0,out=X);

In [25]: X
Out[25]: 
array([[ 0.14673218,  0.09089028],
       [ 0.31663128,  0.10000309],
       [ 0.30968339,  0.09162172],
       [ 0.56843186,  0.36654023],
       [ 0.0957233 ,  0.96210485],
       [ 0.60511059,  0.75001599]])

额外的性能提升

这里有一个使用 np.argsort() -

加速 np.random.permutation(X.shape[0]) 的技巧
np.random.rand(X.shape[0]).argsort()

加速结果 -

In [32]: X = np.random.random((6000, 2000))

In [33]: %timeit np.random.permutation(X.shape[0])
1000 loops, best of 3: 510 µs per loop

In [34]: %timeit np.random.rand(X.shape[0]).argsort()
1000 loops, best of 3: 297 µs per loop

因此,洗牌解决方案可以修改为-

np.take(X,np.random.rand(X.shape[0]).argsort(),axis=0,out=X)

运行时测试 -

这些测试包括 post 中列出的两种方法和 中基于 np.shuffle 的方法。

In [40]: X = np.random.random((6000, 2000))

In [41]: %timeit np.random.shuffle(X)
10 loops, best of 3: 25.2 ms per loop

In [42]: %timeit np.take(X,np.random.permutation(X.shape[0]),axis=0,out=X)
10 loops, best of 3: 53.3 ms per loop

In [43]: %timeit np.take(X,np.random.rand(X.shape[0]).argsort(),axis=0,out=X)
10 loops, best of 3: 53.2 ms per loop

因此,似乎仅当内存是一个问题时才可以使用这些基于 np.take 的解决方案,否则基于 np.random.shuffle 的解决方案看起来是可行的方法。

经过一些实验 (i) 找到了在 nD 数组中随机排列数据(按行)的最内存和最省时的方法。首先,打乱数组的索引,然后使用打乱后的索引获取数据。例如

rand_num2 = np.random.randint(5, size=(6000, 2000))
perm = np.arange(rand_num2.shape[0])
np.random.shuffle(perm)
rand_num2 = rand_num2[perm]

更多细节
在这里,我使用 memory_profiler 来查找内存使用情况和 python 的内置“时间”模块记录时间并比较所有以前的答案

def main():
    # shuffle data itself
    rand_num = np.random.randint(5, size=(6000, 2000))
    start = time.time()
    np.random.shuffle(rand_num)
    print('Time for direct shuffle: {0}'.format((time.time() - start)))
    
    # Shuffle index and get data from shuffled index
    rand_num2 = np.random.randint(5, size=(6000, 2000))
    start = time.time()
    perm = np.arange(rand_num2.shape[0])
    np.random.shuffle(perm)
    rand_num2 = rand_num2[perm]
    print('Time for shuffling index: {0}'.format((time.time() - start)))
    
    # using np.take()
    rand_num3 = np.random.randint(5, size=(6000, 2000))
    start = time.time()
    np.take(rand_num3, np.random.rand(rand_num3.shape[0]).argsort(), axis=0, out=rand_num3)
    print("Time taken by np.take, {0}".format((time.time() - start)))

时间结果

Time for direct shuffle: 0.03345608711242676   # 33.4msec
Time for shuffling index: 0.019818782806396484 # 19.8msec
Time taken by np.take, 0.06726956367492676     # 67.2msec

内存分析器结果

Line #    Mem usage    Increment   Line Contents
================================================
    39  117.422 MiB    0.000 MiB   @profile
    40                             def main():
    41                                 # shuffle data itself
    42  208.977 MiB   91.555 MiB       rand_num = np.random.randint(5, size=(6000, 2000))
    43  208.977 MiB    0.000 MiB       start = time.time()
    44  208.977 MiB    0.000 MiB       np.random.shuffle(rand_num)
    45  208.977 MiB    0.000 MiB       print('Time for direct shuffle: {0}'.format((time.time() - start)))
    46                             
    47                                 # Shuffle index and get data from shuffled index
    48  300.531 MiB   91.555 MiB       rand_num2 = np.random.randint(5, size=(6000, 2000))
    49  300.531 MiB    0.000 MiB       start = time.time()
    50  300.535 MiB    0.004 MiB       perm = np.arange(rand_num2.shape[0])
    51  300.539 MiB    0.004 MiB       np.random.shuffle(perm)
    52  300.539 MiB    0.000 MiB       rand_num2 = rand_num2[perm]
    53  300.539 MiB    0.000 MiB       print('Time for shuffling index: {0}'.format((time.time() - start)))
    54                             
    55                                 # using np.take()
    56  392.094 MiB   91.555 MiB       rand_num3 = np.random.randint(5, size=(6000, 2000))
    57  392.094 MiB    0.000 MiB       start = time.time()
    58  392.242 MiB    0.148 MiB       np.take(rand_num3, np.random.rand(rand_num3.shape[0]).argsort(), axis=0, out=rand_num3)
    59  392.242 MiB    0.000 MiB       print("Time taken by np.take, {0}".format((time.time() - start)))

您可以使用 np.vectorize() 函数 A 按行 打乱二维数组:

shuffle = np.vectorize(np.random.permutation, signature='(n)->(n)')

A_shuffled = shuffle(A)

我对此有疑问(或者这就是答案) 假设我们有一个 shape=(1000,60,11,1) 的 numpy 数组 X 还假设 X 是大小为 60x11 且通道数 =1 (60x11x1) 的图像数组。

如果我想打乱所有这些图像的顺序怎么办,为此我将对 X 的索引使用打乱。

def shuffling( X):
 indx=np.arange(len(X))          # create a array with indexes for X data
 np.random.shuffle(indx)
 X=X[indx]
 return X

这行得通吗?据我所知,len(X) 将 return 最大尺寸大小。

我尝试了很多解决方案,最后我使用了这个简单的解决方案:

from sklearn.utils import shuffle
x = np.array([[1, 2],
              [3, 4],
              [5, 6]])
print(shuffle(x, random_state=0))

输出:

[
[5 6]  
[3 4]  
[1 2]
]

如果你有 3d 数组,循环遍历第一个轴(轴=0)并应用此函数,如:

np.array([shuffle(item) for item in 3D_numpy_array])