TensorFlow:将 float64 张量转换为 float32
TensorFlow: cast a float64 tensor to float32
我正在尝试使用:train = optimizer.minimize(loss)
,但标准优化器不适用于 tf.float64
。因此,我想将 loss
从 tf.float64
截断为仅 tf.float32
。
Traceback (most recent call last):
File "q4.py", line 85, in <module>
train = optimizer.minimize(loss)
File "/Library/Python/2.7/site-packages/tensorflow/python/training/optimizer.py", line 190, in minimize
colocate_gradients_with_ops=colocate_gradients_with_ops)
File "/Library/Python/2.7/site-packages/tensorflow/python/training/optimizer.py", line 229, in compute_gradients
self._assert_valid_dtypes([loss])
File "/Library/Python/2.7/site-packages/tensorflow/python/training/optimizer.py", line 354, in _assert_valid_dtypes
dtype, t.name, [v for v in valid_dtypes]))
ValueError: Invalid type tf.float64 for Add_1:0, expected: [tf.float32].
简短的回答是,您可以使用 tf.cast()
op:
将张量从 tf.float64
转换为 tf.float32
loss = tf.cast(loss, tf.float32)
较长的答案是这不会解决优化器的所有问题。 (缺少对 tf.float64
的支持是 known issue。)优化器要求您尝试优化的所有 tf.Variable
对象必须也有类型 tf.float32
.
我正在尝试使用:train = optimizer.minimize(loss)
,但标准优化器不适用于 tf.float64
。因此,我想将 loss
从 tf.float64
截断为仅 tf.float32
。
Traceback (most recent call last):
File "q4.py", line 85, in <module>
train = optimizer.minimize(loss)
File "/Library/Python/2.7/site-packages/tensorflow/python/training/optimizer.py", line 190, in minimize
colocate_gradients_with_ops=colocate_gradients_with_ops)
File "/Library/Python/2.7/site-packages/tensorflow/python/training/optimizer.py", line 229, in compute_gradients
self._assert_valid_dtypes([loss])
File "/Library/Python/2.7/site-packages/tensorflow/python/training/optimizer.py", line 354, in _assert_valid_dtypes
dtype, t.name, [v for v in valid_dtypes]))
ValueError: Invalid type tf.float64 for Add_1:0, expected: [tf.float32].
简短的回答是,您可以使用 tf.cast()
op:
tf.float64
转换为 tf.float32
loss = tf.cast(loss, tf.float32)
较长的答案是这不会解决优化器的所有问题。 (缺少对 tf.float64
的支持是 known issue。)优化器要求您尝试优化的所有 tf.Variable
对象必须也有类型 tf.float32
.