使用两个不同颜色的数据集创建 matplotlib 热图

Creating a matplotlib heatmap with two different coloured data sets

我目前有两个大数据集,想比较一下。我分别有它们,一个是红色的,一个是蓝色的,但是我想并排显示红色和蓝色。我该怎么做?

我当前的代码是:

column_labels = list(heatmap_ylabels)
row_labels = list(heatmap_xlabels)
fig, ax = plt.subplots()
heatmap = ax.pcolor(data, cmap=plt.cm.Reds)

ax.set_xticks(np.arange(9+0.5))
ax.set_yticks(np.arange(140+0.5))

ax.invert_yaxis()
ax.xaxis.tick_top()
ax.set_xticklabels(row_labels, minor=False)
ax.set_yticklabels(column_labels, minor=False)
#plt.show()
plt.savefig('n1_heatmap')
plt.clf()

column_labels = list(heatmap_ylabels)
row_labels = list(heatmap_xlabels)
fig, ax = plt.subplots()
heatmap = ax.pcolor(data1, cmap=plt.cm.Blues)

ax.set_xticks(np.arange(9+0.5))
ax.set_yticks(np.arange(140+0.5))

ax.invert_yaxis()
ax.xaxis.tick_top()
ax.set_xticklabels(row_labels, minor=False)
ax.set_yticklabels(column_labels, minor=False)
plt.savefig('n2_heatmap')
plt.clf()

datadata1 都由 140 个不同的列表组成,从 280 个不同的文件中提取信息,有没有办法我仍然可以使用这两个列表来创建一个热图,它将在同一张图中显示这些数据?

所以例如我的热图将是 /red/blue/red/blue 等

这是我的热图示例:

编辑:

虽然没有准确显示我想要的,但我制作了一个热图,显示了前两个热图之间的值差异。

例如:y2 = np.subtract(y, y1)

data2.append(y2)
column_labels = list(heatmap_ylabels)
row_labels = list(heatmap_xlabels)
fig, ax = plt.subplots()
heatmap = ax.pcolor(data2, cmap=plt.cm.bwr)

ax.set_xticks(np.arange(9+0.5))
ax.set_yticks(np.arange(140+0.5))

ax.invert_yaxis()
ax.xaxis.tick_top()
ax.set_xticklabels(row_labels, minor=False)
ax.set_yticklabels(column_labels, minor=False)
plt.savefig('diff_heatmap')
plt.clf()

如@jeanrjc 所述,这在概念上与 a previously-asked question 非常相似。但是,在您的案例中如何应用该方法可能并不明显。

这是一个最小的示例,使用两个不同的颜色图绘制两个具有相同形状 "side-by-side" 的数组。关键是独立绘制两个掩码数组。要创建这些屏蔽数组,我们将创建列数加倍的新数组,并每隔一列屏蔽一次。

这是一个简单的例子(注意有几种方法可以创建屏蔽数组模式):

import numpy as np
import matplotlib.pyplot as plt

# Generate data
nrows, ncols = 20, 5
x = np.random.random((nrows, ncols))
y = np.random.random((nrows, ncols))

# Make data for display
mask = np.array(nrows * [ncols * [False, True]], dtype=bool)
red = np.ma.masked_where(mask, np.repeat(x, 2, axis=1))

mask = np.array(nrows * [ncols * [True, False]], dtype=bool)
blue = np.ma.masked_where(mask, np.repeat(y, 2, axis=1))

# Make a side-by-side plot
fig, ax = plt.subplots()
ax.pcolormesh(red, cmap='Reds')
ax.pcolormesh(blue, cmap='Blues')
plt.show()

如果我们想制作一个更漂亮的版本,我们可以做类似的事情:

import numpy as np
import matplotlib.pyplot as plt

# Generate data
nrows, ncols = 20, 5
x = np.exp(np.random.normal(0, 0.8, (nrows, ncols)))
y = np.exp(np.random.normal(0, 1, (nrows, ncols)))

# Make data for display
mask = np.array(nrows * [ncols * [False, True]], dtype=bool)
red = np.ma.masked_where(mask, np.repeat(x, 2, axis=1))

mask = np.array(nrows * [ncols * [True, False]], dtype=bool)
blue = np.ma.masked_where(mask, np.repeat(y, 2, axis=1))

# Make a side-by-side plot
fig, ax = plt.subplots()
redmesh = ax.pcolormesh(red, cmap='Reds')
bluemesh = ax.pcolormesh(blue, cmap='Blues')

# Make things a touch fancier
ax.set(xticks=np.arange(1, 2 * ncols, 2),
       yticks=np.arange(nrows) + 0.5,
       xticklabels=['Column ' + letter for letter in 'ABCDE'],
       yticklabels=['Row {}'.format(i+1) for i in range(nrows)])

ax.set_title('Side-by-Side Plot', y=1.07)
ax.xaxis.tick_top()
ax.yaxis.tick_left()
ax.tick_params(direction='out')

# Add dual colorbars
fig.subplots_adjust(bottom=0.05, right=0.78, top=0.88)
cbar = fig.colorbar(redmesh, cax=fig.add_axes([0.81, 0.05, 0.04, 0.83]))
cbar.ax.text(0.55, 0.1, 'Variable 1', rotation=90, ha='center', va='center',
             transform=cbar.ax.transAxes, color='gray')
cbar = fig.colorbar(bluemesh, cax=fig.add_axes([0.9, 0.05, 0.04, 0.83]))
cbar.ax.text(0.55, 0.1, 'Variable 2', rotation=90, ha='center', va='center',
             transform=cbar.ax.transAxes, color='gray')

# Make the grouping clearer
ax.set_xticks(np.arange(0, 2 * ncols, 2), minor=True)
ax.grid(axis='x', ls='-', color='gray', which='minor')
ax.grid(axis='y', ls=':', color='gray')

plt.show()