python 如何用零填充 numpy 数组

python how to pad numpy array with zeros

我想知道如何使用带有 numpy 版本 1.5.0 的 python 2.6.6 用零填充 2D numpy 数组。但这些是我的局限性。因此我不能使用 np.pad。例如,我想用零填充 a,使其形状与 b 匹配。我之所以要这样做,是因为我可以做到:

b-a

这样

>>> a
array([[ 1.,  1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.,  1.]])
>>> b
array([[ 3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.]])
>>> c
array([[1, 1, 1, 1, 1, 0],
       [1, 1, 1, 1, 1, 0],
       [1, 1, 1, 1, 1, 0],
       [0, 0, 0, 0, 0, 0]])

我能想到的唯一方法是追加,但这看起来很难看。是否有可能使用 b.shape 的更清洁的解决方案?

编辑, 感谢 MSeifert 的回答。我不得不稍微清理一下,这就是我得到的:

def pad(array, reference_shape, offsets):
    """
    array: Array to be padded
    reference_shape: tuple of size of ndarray to create
    offsets: list of offsets (number of elements must be equal to the dimension of the array)
    will throw a ValueError if offsets is too big and the reference_shape cannot handle the offsets
    """

    # Create an array of zeros with the reference shape
    result = np.zeros(reference_shape)
    # Create a list of slices from offset to offset + shape in each dimension
    insertHere = [slice(offsets[dim], offsets[dim] + array.shape[dim]) for dim in range(array.ndim)]
    # Insert the array in the result at the specified offsets
    result[insertHere] = array
    return result

非常简单,您使用参考形状创建一个包含零的数组:

result = np.zeros(b.shape)
# actually you can also use result = np.zeros_like(b) 
# but that also copies the dtype not only the shape

然后在需要的地方插入数组:

result[:a.shape[0],:a.shape[1]] = a

瞧,你填充了它:

print(result)
array([[ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

如果您定义应该插入左上角元素的位置,还可以使它更通用一些

result = np.zeros_like(b)
x_offset = 1  # 0 would be what you wanted
y_offset = 1  # 0 in your case
result[x_offset:a.shape[0]+x_offset,y_offset:a.shape[1]+y_offset] = a
result

array([[ 0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.],
       [ 0.,  1.,  1.,  1.,  1.,  1.],
       [ 0.,  1.,  1.,  1.,  1.,  1.]])

但请注意不要让偏移量大于允许值。例如,对于 x_offset = 2,这将失败。


如果你有任意数量的维度,你可以定义一个切片列表来插入原始数组。我发现玩一下很有趣,并创建了一个填充函数,只要数组和引用具有相同的维数并且偏移量不太大,它就可以填充(带偏移量)任意形状的数组。

def pad(array, reference, offsets):
    """
    array: Array to be padded
    reference: Reference array with the desired shape
    offsets: list of offsets (number of elements must be equal to the dimension of the array)
    """
    # Create an array of zeros with the reference shape
    result = np.zeros(reference.shape)
    # Create a list of slices from offset to offset + shape in each dimension
    insertHere = [slice(offset[dim], offset[dim] + array.shape[dim]) for dim in range(a.ndim)]
    # Insert the array in the result at the specified offsets
    result[insertHere] = a
    return result

和一些测试用例:

import numpy as np

# 1 Dimension
a = np.ones(2)
b = np.ones(5)
offset = [3]
pad(a, b, offset)

# 3 Dimensions

a = np.ones((3,3,3))
b = np.ones((5,4,3))
offset = [1,0,0]
pad(a, b, offset)

我知道你的主要问题是你需要计算 d=b-a 但你的数组有不同的大小。不需要中间填充c

不用填充也能解决这个问题:

import numpy as np

a = np.array([[ 1.,  1.,  1.,  1.,  1.],
              [ 1.,  1.,  1.,  1.,  1.],
              [ 1.,  1.,  1.,  1.,  1.]])

b = np.array([[ 3.,  3.,  3.,  3.,  3.,  3.],
              [ 3.,  3.,  3.,  3.,  3.,  3.],
              [ 3.,  3.,  3.,  3.,  3.,  3.],
              [ 3.,  3.,  3.,  3.,  3.,  3.]])

d = b.copy()
d[:a.shape[0],:a.shape[1]] -=  a

print d

输出:

[[ 2.  2.  2.  2.  2.  3.]
 [ 2.  2.  2.  2.  2.  3.]
 [ 2.  2.  2.  2.  2.  3.]
 [ 3.  3.  3.  3.  3.  3.]]

NumPy 1.7.0(当 numpy.pad was added) is pretty old now (it was released in 2013) so even though the question asked for a way without using that function I thought it could be useful to know how that could be achieved using numpy.pad.

其实很简单:

>>> import numpy as np
>>> a = np.array([[ 1.,  1.,  1.,  1.,  1.],
...               [ 1.,  1.,  1.,  1.,  1.],
...               [ 1.,  1.,  1.,  1.,  1.]])
>>> np.pad(a, [(0, 1), (0, 1)], mode='constant')
array([[ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

在这种情况下,我使用 0mode='constant' 的默认值。但它也可以通过显式传递来指定:

>>> np.pad(a, [(0, 1), (0, 1)], mode='constant', constant_values=0)
array([[ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

以防万一第二个参数 ([(0, 1), (0, 1)]) 看起来令人困惑:每个列表项(在本例中为元组)对应一个维度,其中的项表示 before[=45= 的填充](第一个元素)和 after(第二个元素)。所以:

[(0, 1), (0, 1)]
         ^^^^^^------ padding for second dimension
 ^^^^^^-------------- padding for first dimension

  ^------------------ no padding at the beginning of the first axis
     ^--------------- pad with one "value" at the end of the first axis.

在这种情况下,第一轴和第二轴的填充是相同的,因此也可以只传入二元组:

>>> np.pad(a, (0, 1), mode='constant')
array([[ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

如果前后填充相同,甚至可以省略元组(虽然在这种情况下不适用):

>>> np.pad(a, 1, mode='constant')
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.]])

或者如果轴前后的填充相同但不同,你也可以省略内部元组中的第二个参数:

>>> np.pad(a, [(1, ), (2, )], mode='constant')
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])

但是我倾向于始终使用显式的,因为它很容易出错(当 NumPys 的期望与您的意图不同时):

>>> np.pad(a, [1, 2], mode='constant')
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])

这里 NumPy 认为您想用每个轴前 1 个元素和后 2 个元素填充所有轴!即使您打算在轴 1 中填充 1 个元素,在轴 2 中填充 2 个元素。

我使用元组列表作为填充,请注意这只是 "my convention",您还可以使用列表列表或元组元组,甚至数组元组。 NumPy 只检查参数的长度(或者如果它没有长度)和每个项目的长度(或者如果它有长度)!

如果您需要将 1 的栅栏添加到数组中:

>>> mat = np.zeros((4,4), np.int32)
>>> mat
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]])
>>> mat[0,:] = mat[:,0] = mat[:,-1] =  mat[-1,:] = 1
>>> mat
array([[1, 1, 1, 1],
       [1, 0, 0, 1],
       [1, 0, 0, 1],
       [1, 1, 1, 1]])

我知道我有点晚了,但如果您想执行相对填充(也称为边缘填充),可以按照以下方法实现它。请注意,赋值的第一个实例导致 zero-padding,因此您可以将其用于 zero-padding 和相对填充(这是您将原始数组的边缘值复制到填充数组的位置)。

def replicate_padding(arr):
    """Perform replicate padding on a numpy array."""
    new_pad_shape = tuple(np.array(arr.shape) + 2) # 2 indicates the width + height to change, a (512, 512) image --> (514, 514) padded image.
    padded_array = np.zeros(new_pad_shape) #create an array of zeros with new dimensions
    
    # perform replication
    padded_array[1:-1,1:-1] = arr        # result will be zero-pad
    padded_array[0,1:-1] = arr[0]        # perform edge pad for top row
    padded_array[-1, 1:-1] = arr[-1]     # edge pad for bottom row
    padded_array.T[0, 1:-1] = arr.T[0]   # edge pad for first column
    padded_array.T[-1, 1:-1] = arr.T[-1] # edge pad for last column
    
    #at this point, all values except for the 4 corners should have been replicated
    padded_array[0][0] = arr[0][0]     # top left corner
    padded_array[-1][0] = arr[-1][0]   # bottom left corner
    padded_array[0][-1] = arr[0][-1]   # top right corner 
    padded_array[-1][-1] = arr[-1][-1] # bottom right corner

    return padded_array

复杂度分析:

最佳解决方案是numpy的pad方法。 平均运行 5 次后,具有相对填充的 np.pad 仅比上面定义的函数好 8%。这表明这是相对和 zero-padding 填充的最佳方法。


#My method, replicate_padding
start = time.time()
padded = replicate_padding(input_image)
end = time.time()
delta0 = end - start

#np.pad with edge padding
start = time.time()
padded = np.pad(input_image, 1, mode='edge')
end = time.time()
delta = end - start


print(delta0) # np Output: 0.0008790493011474609 
print(delta)  # My Output: 0.0008130073547363281
print(100*((delta0-delta)/delta)) # Percent difference: 8.12316715542522%

Tensorflow 还为 resizing/padding 图像 tf.image.pad tf.pad.

实现了函数
padded_image = tf.image.pad_to_bounding_box(image, top_padding, left_padding, target_height, target_width)

padded_image = tf.pad(image, paddings, "CONSTANT")

这些函数的工作方式与 tensorflow 的其他输入管道功能一样,对于机器学习应用程序来说效果会更好。

TL;DR

def pad_n_cols_left_of_2d_matrix(arr, n):
    """Adds n columns of zeros to left of 2D numpy array matrix.

    :param arr: A two dimensional numpy array that is padded.
    :param n: the number of columns that are added to the left of the matrix.
    """
    padded_array = np.zeros((arr.shape[0], arr.shape[1] + n))
    padded_array[:, n:] = arr
    return padded_array


def pad_n_cols_right_of_2d_matrix(arr, n):
    """Adds n columns of zeros to right of 2D numpy array matrix.

    :param arr: A two dimensional numpy array that is padded.
    :param n: the number of columns that are added to the right of the matrix.
    """
    padded_array = np.zeros((arr.shape[0], arr.shape[1] + n))
    padded_array[:, : arr.shape[1]] = arr
    return padded_array


def pad_n_rows_above_2d_matrix(arr, n):
    """Adds n rows of zeros above 2D numpy array matrix.

    :param arr: A two dimensional numpy array that is padded.
    :param n: the number of rows that are added above the matrix.
    """
    padded_array = np.zeros((arr.shape[0] + n, arr.shape[1]))
    padded_array[n:, :] = arr
    return padded_array


def pad_n_rows_below_2d_matrix(arr, n):
    """Adds n rows of zeros below 2D numpy array matrix.

    :param arr: A two dimensional numpy array that is padded.
    :param n: the number of rows that are added below the matrix.
    """
    padded_array = np.zeros((arr.shape[0] + n, arr.shape[1]))
    padded_array[: arr.shape[0], :] = arr
    return padded_array

输出

Original array:
[[0.  0.5 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.5 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.4 0.6 0.8 1.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.4 0.6 0.8 1.  0.  0.  0.  0.  0.  0. ]]
Pad left:
[[0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.5 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.5 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.4 0.6 0.8 1.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.4 0.6 0.8 1.  0.  0.  0.  0.  0.  0. ]]
Pad right:
[[0.  0.5 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.5 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.4 0.6 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.4 0.6 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]]
Pad above:
[[0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.5 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.5 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.4 0.6 0.8 1.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.4 0.6 0.8 1.  0.  0.  0.  0.  0.  0. ]]
Pad below:
[[0.  0.5 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.5 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.3 0.7 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.4 0.6 0.8 1.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.5 0.8 1.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.2 0.4 0.6 0.8 1.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]
 [0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. ]]

动机

我来这里搜索如何填充数组并找到了很多文本,尽管我的 objective 问题很简单:用 n 行或列填充二维数组. 我认为解释更好,因为它们有助于建立理解。但是,为了让一些人可以节省一些时间,如果他们愿意的话,这里有一个 copy-pastable 功能。

代码说明

每个函数向传入数组添加 n 行或列。代码假定传入数组是 2D numpy 数组。填充的方向根据函数definition/names。有关更详细的解释,我想参考 reader MSeifert 的回答。