如何在张量流上可视化学习过滤器
How to visualize learned filters on tensorflow
与 Caffe 框架类似,可以在 CNN 训练期间观察学习到的过滤器及其与输入图像的卷积,我想知道是否可以用 TensorFlow 做同样的事情?
可以在这个 link 中查看 Caffe 示例:
http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/00-classification.ipynb
感谢您的帮助!
要在 Tensorboard 中查看几个 conv1 过滤器,您可以使用此代码(适用于 cifar10)
# this should be a part of the inference(images) function in cifar10.py file
# conv1
with tf.variable_scope('conv1') as scope:
kernel = _variable_with_weight_decay('weights', shape=[5, 5, 3, 64],
stddev=1e-4, wd=0.0)
conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope.name)
_activation_summary(conv1)
with tf.variable_scope('visualization'):
# scale weights to [0 1], type is still float
x_min = tf.reduce_min(kernel)
x_max = tf.reduce_max(kernel)
kernel_0_to_1 = (kernel - x_min) / (x_max - x_min)
# to tf.image_summary format [batch_size, height, width, channels]
kernel_transposed = tf.transpose (kernel_0_to_1, [3, 0, 1, 2])
# this will display random 3 filters from the 64 in conv1
tf.image_summary('conv1/filters', kernel_transposed, max_images=3)
我还写了一个简单的 gist 来在网格中显示所有 64 个 conv1 过滤器。
与 Caffe 框架类似,可以在 CNN 训练期间观察学习到的过滤器及其与输入图像的卷积,我想知道是否可以用 TensorFlow 做同样的事情?
可以在这个 link 中查看 Caffe 示例:
http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/00-classification.ipynb
感谢您的帮助!
要在 Tensorboard 中查看几个 conv1 过滤器,您可以使用此代码(适用于 cifar10)
# this should be a part of the inference(images) function in cifar10.py file
# conv1
with tf.variable_scope('conv1') as scope:
kernel = _variable_with_weight_decay('weights', shape=[5, 5, 3, 64],
stddev=1e-4, wd=0.0)
conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope.name)
_activation_summary(conv1)
with tf.variable_scope('visualization'):
# scale weights to [0 1], type is still float
x_min = tf.reduce_min(kernel)
x_max = tf.reduce_max(kernel)
kernel_0_to_1 = (kernel - x_min) / (x_max - x_min)
# to tf.image_summary format [batch_size, height, width, channels]
kernel_transposed = tf.transpose (kernel_0_to_1, [3, 0, 1, 2])
# this will display random 3 filters from the 64 in conv1
tf.image_summary('conv1/filters', kernel_transposed, max_images=3)
我还写了一个简单的 gist 来在网格中显示所有 64 个 conv1 过滤器。