将 ARMA 模型拟合到按 python 中的时间索引的时间序列
Fitting ARMA model to time series indexed by time in python
我正在尝试将 ARMA 模型拟合到存储在 pandas 数据帧中的时间序列。数据框有一列名为 "val" 的 numpy.float64 类型的值和一个 pandas 时间戳的索引。时间戳采用 "Year-Month-Day Hour:Minute:Second" 格式。我理解的是以下代码:
from statsmodels.tsa.arima_model import ARMA
model = ARMA(df["val"], (1,0))
给我错误信息:
ValueError: Given a pandas object and the index does not contain dates
因为我没有正确格式化时间戳。我如何索引我的数据框,以便 ARMA 方法在保留我的日期和时间信息的同时接受它?
我认为你需要将 index
转换为 DatetimeIndex
:
df.index = pd.DatetimeIndex(df.index)
样本:
import pandas as pd
from statsmodels.tsa.arima_model import ARMA
df=pd.DataFrame({"val": pd.Series([1.1,1.7,8.4 ],
index=['2015-01-15 12:10:23','2015-02-15 12:10:23','2015-03-15 12:10:23'])})
print df
val
2015-01-15 12:10:23 1.1
2015-02-15 12:10:23 1.7
2015-03-15 12:10:23 8.4
print df.index
Index([u'2015-01-15 12:10:23',u'2015-02-15 12:10:23',u'2015-03-15 12:10:23'], dtype='object')
df.index = pd.DatetimeIndex(df.index)
print df.index
DatetimeIndex(['2015-01-15 12:10:23', '2015-02-15 12:10:23',
'2015-03-15 12:10:23'],
dtype='datetime64[ns]', freq=None)
model = ARMA(df["val"], (1,0))
print model
<statsmodels.tsa.arima_model.ARMA object at 0x000000000D5247B8>
我正在尝试将 ARMA 模型拟合到存储在 pandas 数据帧中的时间序列。数据框有一列名为 "val" 的 numpy.float64 类型的值和一个 pandas 时间戳的索引。时间戳采用 "Year-Month-Day Hour:Minute:Second" 格式。我理解的是以下代码:
from statsmodels.tsa.arima_model import ARMA
model = ARMA(df["val"], (1,0))
给我错误信息:
ValueError: Given a pandas object and the index does not contain dates
因为我没有正确格式化时间戳。我如何索引我的数据框,以便 ARMA 方法在保留我的日期和时间信息的同时接受它?
我认为你需要将 index
转换为 DatetimeIndex
:
df.index = pd.DatetimeIndex(df.index)
样本:
import pandas as pd
from statsmodels.tsa.arima_model import ARMA
df=pd.DataFrame({"val": pd.Series([1.1,1.7,8.4 ],
index=['2015-01-15 12:10:23','2015-02-15 12:10:23','2015-03-15 12:10:23'])})
print df
val
2015-01-15 12:10:23 1.1
2015-02-15 12:10:23 1.7
2015-03-15 12:10:23 8.4
print df.index
Index([u'2015-01-15 12:10:23',u'2015-02-15 12:10:23',u'2015-03-15 12:10:23'], dtype='object')
df.index = pd.DatetimeIndex(df.index)
print df.index
DatetimeIndex(['2015-01-15 12:10:23', '2015-02-15 12:10:23',
'2015-03-15 12:10:23'],
dtype='datetime64[ns]', freq=None)
model = ARMA(df["val"], (1,0))
print model
<statsmodels.tsa.arima_model.ARMA object at 0x000000000D5247B8>