Haskell里面有没有类似副守卫的东西?

Is there, in Haskell, something similar to sub-guards?

我正在编写一个关于音程分类的程序。概念结构相当复杂,我会尽可能清楚地表达它。前几行代码是一个可以正常工作的小片段。第二个是符合我简洁要求的伪代码。

interval pt1 pt2
  | gd == 0 && sd <  (-2) = ("unison",show (abs sd) ++ "d") 
  | gd == 0 && sd == (-2) = ("unison","dd")
  | gd == 0 && sd == (-1) = ("unison","d")
  | gd == 0 && sd == 0    = ("unison","P")
  | gd == 0 && sd == 1    = ("unison","A")
  | gd == 0 && sd == 2    = ("unison","AA")
  | gd == 0 && sd >  2    = ("unison",show sd ++ "A")

  | gd == 1 && sd <  (-1) = ("second",show (abs sd) ++ "d")
  | gd == 1 && sd == (-1) = ("second","dd")
  | gd == 1 && sd == 0    = ("second","d")
  | gd == 1 && sd == 1    = ("second","m")
  | gd == 1 && sd == 2    = ("second","M")
  | gd == 1 && sd == 3    = ("second","A")
  | gd == 1 && sd == 4    = ("second","AA")
  | gd == 1 && sd >  4    = ("second",show (abs sd) ++ "A")

  where
  (bn1,acc1,oct1) = parsePitch pt1
  (bn2,acc2,oct2) = parsePitch pt2
  direction = signum sd
  sd = displacementInSemitonesOfPitches pt1 pt2
  gd = abs $ displacementBetweenTwoBaseNotes direction bn1 bn2

是否有一种编程结构可以像下面的伪代码那样简化代码?

interval pt1 pt2 
  | gd == 0  | sd <  (-2) = ("unison",show (abs sd) ++ "d") 
             | sd == (-2) = ("unison","dd")
             | sd == (-1) = ("unison","d")
             | sd == 0    = ("unison","P")
             | sd == 1    = ("unison","A")
             | sd == 2    = ("unison","AA")
             | sd >  2    = ("unison",show sd ++ "A")  
  | gd == 1  | sd <  (-1) = ("second",show (abs sd) ++ "d")
             | sd == (-1) = ("second","dd")
             | sd == 0    = ("second","d")
             | sd == 1    = ("second","m")
             | sd == 2    = ("second","M")
             | sd == 3    = ("second","A")
             | sd == 4    = ("second","AA")
             | sd >  4    = ("second",show (abs sd) ++ "A")
  | gd == 2  | sd ...     = ...
             | sd ...     = ...
  ...
  | mod gd 7 == 1 | mod sd 12 == ...
                  | mod sd 12 == ...
  ...
  | otherwise = ...

  where
  (bn1,acc1,oct1) = parsePitch pt1
  (bn2,acc2,oct2) = parsePitch pt2
  direction = signum sd
  sd = displacementInSemitonesOfPitches pt1 pt2
  gd = abs $ displacementBetweenTwoBaseNotes direction bn1 bn2

提前感谢您的建议。

我建议将每个嵌套条件分组到一个函数中:

interval :: _ -> _ -> (String, String)
interval pt1 pt2
    | gd == 0 = doSomethingA pt1 pt2
    | gd == 1 = doSomethingB pt1 pt2
    | gd == 2 = doSomethingC pt1 pt2
    ...

然后,例如:

doSomethingA :: _ -> _ -> (String, String)
doSomethingA pt1 pt2
    | sd <  (-2) = ("unison",show (abs sd) ++ "d") 
    | sd == (-2) = ("unison","dd")
    | sd == (-1) = ("unison","d")
    | sd == 0    = ("unison","P")
    | sd == 1    = ("unison","A")
    | sd == 2    = ("unison","AA")
    | sd >  2    = ("unison",show sd ++ "A")
    where sd = displacementInSemitonesOfPitches pt1 pt2  

或者您可以使用 MultiWayIf 语言扩展:

interval pt1 pt2 =
    if | gd == 0 -> if | sd <  (-2) -> ("unison",show (abs sd) ++ "d") 
                       | sd == (-2) -> ("unison","dd")
                       | sd == (-1) -> ("unison","d")
                       ...
       | gd == 1 -> if | sd <  (-1) -> ("second",show (abs sd) ++ "d")
                       | sd == (-1) -> ("second","dd")
                       | sd == 0    -> ("second","d")
                       ...

让我用一个比发布的例子更短的例子:

original :: Int -> Int
original n
  | n < 10 && n > 7 = 1   -- matches 8,9
  | n < 12 && n > 5 = 2   -- matches 6,7,10,11
  | n < 12 && n > 3 = 3   -- matches 4,5
  | n < 13 && n > 0 = 4   -- matches 1,2,3,12

代码在GHCi中运行如下:

> map original [1..12]
[4,4,4,3,3,2,2,1,1,2,2,4]

我们的目标是 "group" 将需要 n < 12 的两个分支合并在一起,将此条件排除在外。 (这在 original 玩具示例中并不是一个巨大的收获,但它可能在更复杂的情况下。)

我们可以天真地想到将代码拆分为两个嵌套的情况:

wrong1 :: Int -> Int
wrong1 n = case () of 
  _ | n < 10 && n > 7 -> 1
    | n < 12 -> case () of
                _ | n > 5 -> 2
                  | n > 3 -> 3
    | n < 13 && n > 0 -> 4

或者,等效地,使用 MultiWayIf 扩展名:

wrong2 :: Int -> Int
wrong2 n = if 
  | n < 10 && n > 7 -> 1
  | n < 12 -> if | n > 5 -> 2
                 | n > 3 -> 3
  | n < 13 && n > 0 -> 4

然而,这会导致意外:

> map wrong1 [1..12]
*** Exception: Non-exhaustive patterns in case

> map wrong2 [1..12]
*** Exception: Non-exhaustive guards in multi-way if

问题在于,当 n1 时,会采用 n < 12 分支,评估内部情况,然后那里没有分支考虑 1original 代码只是尝试处理它的下一个分支。但是,wrong1,wrong2 并没有回溯到外壳。

请注意,当您知道外壳具有非重叠条件时,这不是问题。在 OP 发布的代码中,情况似乎如此,因此 wrong1,wrong2 方法可以在那里工作(如 Jeffrey 所示)。

但是,在可能存在重叠的一般情况下呢?幸运的是,Haskell 是惰性的,所以很容易推出我们自己的控制结构。为此,我们可以如下利用 Maybe monad:

correct :: Int -> Int
correct n = fromJust $ msum 
   [ guard (n < 10 && n > 7) >> return 1
   , guard (n < 12)          >> msum
      [ guard (n > 5) >> return 2
      , guard (n > 3) >> return 3 ]
   , guard (n < 13 && n > 0) >> return 4 ]

有点冗长,但不是很多。用这种风格编写代码比看起来更容易:一个简单的多路条件写成

foo n = fromJust $ msum 
   [ guard boolean1 >> return value1
   , guard boolean2 >> return value2
   , ...
   ]

并且,如果您想要 "nested" 案例,只需将任何 return value 替换为 msum [ ... ]

这样做可以确保我们得到想要的回溯。确实:

> map correct [1..12]
[4,4,4,3,3,2,2,1,1,2,2,4]

这里的技巧是,当 guard 失败时,它会生成一个 Nothing 值。库函数 msum 只是选择列表中的第一个非 Nothing 值。因此,即使内部列表中的每个元素都是 Nothing,外部 msum 也会考虑外部列表中的下一个项目——根据需要进行回溯。

这并不是标题问题的真正答案,而是针对您的特定应用程序。类似的方法将适用于您可能希望这样的许多其他问题 sub-guards.

首先,我建议您从较少的“字符串类型”开始:

interval' :: PitchSpec -> PitchSpec -> Interval

data Interval = Unison PureQuality
              | Second IntvQuality
              | Third IntvQuality
              | Fourth PureQuality
              | ...

data IntvQuality = Major | Minor | OtherQual IntvDistortion
type PureQuality = Maybe IntvDistortion
data IntvDistortion = Augm Int | Dimin Int   -- should actually be Nat rather than Int

不管怎样,你的特定任务可以通过“计算”值来更优雅地完成,而不是与一堆比较 hard-coded 例。基本上,您需要的是:

type RDegDiatonic = Int
type RDeg12edo = Rational  -- we need quarter-tones for neutral thirds etc., which aren't in 12-edo tuning

courseInterval :: RDegDiatonic -> (Interval, RDeg12edo)
courseInterval 0 = ( Unison undefined, 0   )
courseInterval 1 = ( Second undefined, 1.5 )
courseInterval 2 = ( Third undefined,  3.5 )
courseInterval 3 = ( Fourth undefined, 5   )
...

然后您可以使用1

将 12edo-size 与您提供的大小进行比较,从而“填充”那些未定义的间隔质量
class IntervalQuality q where
  qualityFrom12edoDiff :: RDeg12edo -> q

instance IntervalQuality PureQuality where
  qualityFrom12edoDiff n = case round n of
         0 -> Nothing
         n' | n'>0       -> Augm n
            | otherwise  -> Dimin n'
instance IntervalQuality IntvQuality where
  qualityFrom12edoDiff n | n > 1      = OtherQual . Augm $ floor n
                         | n < -1     = OtherQual . Dimin $ ceil n
                         | n > 0      = Major
                         | otherwise  = Minor

这样,你就可以实现你的功能了:

interval pt1 pt2 = case gd of
       0 -> Unison . qualityFrom12edoDiff $ sd - 0
       1 -> Second . qualityFrom12edoDiff $ sd - 1.5
       2 -> Third  . qualityFrom12edoDiff $ sd - 3.5
       3 -> Fourth . qualityFrom12edoDiff $ sd - 5
       ...


1真的不需要类型class,我也可以定义两个diffently-named 纯区间和其他区间的函数。