Keras:CuDNN 不可用?

Keras: CuDNN not available?

我是 运行 Kerasexample kaggle_otto_nn.py,后端是 theano

在下面的打印输出中,第 5 行说:

CNMeM is enabled with initial size: 90.0% of memory, CuDNN not available

我想知道,这 CuDNN not available 重要吗,因为 GPU 设备是可检测的?我 运行 我在 GPU 上的程序正确吗?或者它实际上不是 运行 在 GPU 上。

cliu@cliu-ubuntu:keras-examples$ THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32,lib.cnmem=0.9 python kaggle_otto_nn.py
Using Theano backend.
/usr/local/lib/python2.7/dist-packages/Theano-0.8.0rc1-py2.7.egg/theano/tensor/signal/downsample.py:6: UserWarning: downsample module has been moved to the theano.tensor.signal.pool module.
  "downsample module has been moved to the theano.tensor.signal.pool module.")
Using gpu device 0: Quadro K610M (CNMeM is enabled with initial size: 90.0% of memory, CuDNN not available)
Loading data...
9 classes
93 dims
Building model...
Training model...
Train on 52596 samples, validate on 9282 samples
Epoch 1/20
52596/52596 [==============================] - 6s - loss: 0.9420 - val_loss: 0.6269
Epoch 2/20
52596/52596 [==============================] - 6s - loss: 0.6955 - val_loss: 0.5817
...
Epoch 20/20
52596/52596 [==============================] - 6s - loss: 0.4866 - val_loss: 0.4819
Generating submission...
144368/144368 [==============================] - 1s     
Wrote submission to file keras-otto.csv.

cuDNN 是 NVidia 的一个库,它提高了神经网络在 GPU 上的性能。所以你的程序仍然在 GPU 上运行,但比安装 cuDNN 时慢得多。