如何根据另一个 Akka 流的元素聚合一个 Akka 流的元素?

How to aggregate elements of one Akka stream based on elements of another?

示例场景:将流的字节分组为大小由另一个流(整数)确定的块。

def partition[A, B, C](
  first:Source[A, NotUsed],
  second:Source[B, NotUsed],
  aggregate:(Int => Seq[A], B) => C
):Source[C, NotUsed] = ???

val bytes:Source[Byte, NotUsed] = ???
val sizes:Source[Int, NotUsed] = ???

val chunks:Source[ByteString, NotUsed] =
  partition(bytes, sizes, (grab, count) => ByteString(grab(count)))

我最初的尝试包括 Flow#scan and Flow#prefixAndTail, but it doesn't feel quite right (see below). I also took a look at Framing, but it doesn't seem to be applicable to the example scenario above (nor is it general enough to accommodate non-bytestring streams). I'm guessing my only option is to use Graphs (or the more general FlowOps#transform) 的组合,但我还不够精通 Akka 流来进行尝试。


这是我到目前为止能够想到的(特定于示例场景):

val chunks:Source[ByteString, NotUsed] = sizes
  .scan(bytes prefixAndTail 0) {
    (grouped, count) => grouped flatMapConcat {
      case (chunk, remainder) => remainder prefixAndTail count
    }
  }
  .flatMapConcat(identity)
  .collect { case (chunk, _) if chunk.nonEmpty => ByteString(chunk:_*) }

我认为您可以将处理实现为自定义 GraphStage。舞台将有两个 Inlet 元素。一个获取字节,另一个获取大小。它将有一个 Outlet 元素产生值。

考虑以下输入流。

def randomChars = Iterator.continually(Random.nextPrintableChar())
def randomNumbers = Iterator.continually(math.abs(Random.nextInt() % 50))

val bytes: Source[Char, NotUsed] =
  Source.fromIterator(() => randomChars)

val sizes: Source[Int, NotUsed] =
  Source.fromIterator(() => randomNumbers).filter(_ != 0)

然后使用描述自定义流处理的信息 (http://doc.akka.io/docs/akka/2.4.2/scala/stream/stream-customize.html) 您可以构建 GraphStage.

case class ZipFraming() extends GraphStage[FanInShape2[Int, Char, (Int, ByteString)]] {

  override def initialAttributes = Attributes.name("ZipFraming")

  override val shape: FanInShape2[Int, Char, (Int, ByteString)] =
    new FanInShape2[Int, Char, (Int, ByteString)]("ZipFraming")

  val inFrameSize: Inlet[Int] = shape.in0
  val inElements: Inlet[Char] = shape.in1

  def out: Outlet[(Int, ByteString)] = shape.out

  override def createLogic(inheritedAttributes: Attributes): GraphStageLogic =
    new GraphStageLogic(shape) {
      // we will buffer as much as 512 characters from the input
      val MaxBufferSize = 512
      // the buffer for the received chars
      var buffer = Vector.empty[Char]
      // the needed number of elements
      var needed: Int = -1
      // if the downstream is waiting
      var isDemanding = false

      override def preStart(): Unit = {
        pull(inFrameSize)
        pull(inElements)
      }

      setHandler(inElements, new InHandler {
        override def onPush(): Unit = {
          // we buffer elements as long as we can
          if (buffer.size < MaxBufferSize) {
            buffer = buffer :+ grab(inElements)
            pull(inElements)
          }
          emit()
        }
      })

      setHandler(inFrameSize, new InHandler {
        override def onPush(): Unit = {
          needed = grab(inFrameSize)
          emit()
        }
      })

      setHandler(out, new OutHandler {
        override def onPull(): Unit = {
          isDemanding = true
          emit()
        }
      })

      def emit(): Unit = {
        if (needed > 0 && buffer.length >= needed && isDemanding) {
          val (emit, reminder) = buffer.splitAt(needed)
          push(out, (needed, ByteString(emit.map(_.toByte).toArray)))
          buffer = reminder
          needed = -1
          isDemanding = false
          pull(inFrameSize)
          if (!hasBeenPulled(inElements)) pull(inElements)
        }
      }
    }
}

这就是你 运行 的方式。

RunnableGraph.fromGraph(GraphDSL.create(bytes, sizes)(Keep.none) { implicit b =>
  (bs, ss) =>
    import GraphDSL.Implicits._

    val zipFraming = b.add(ZipFraming())

    ss ~> zipFraming.in0
    bs ~> zipFraming.in1

    zipFraming.out ~> Sink.foreach[(Int, ByteString)](e => println((e._1, e._2.utf8String)))

    ClosedShape
}).run()