拟合函数的置信区间
Confidence intervals of fit function
我正在尝试处理拟合曲线的解释。
出于拟合目的,我使用 Matlab 的 fit
函数使用预定义模型(如 poly2
)或自定义模型(如 y=ax^4+bx^2+c
)没有任何问题。
我想确定每个参数(a
、b
和 c
)的质量,以便能够绘制数据点 (able)、拟合曲线 (able)和 "area where the curve can be with a given probability"(无法)。
如果我运行foo=fit(x,y,'poly1')
没有分号,那么return就是:
foo =
Linear model Poly1:
fitNi(x) = p1*x + p2
Coefficients (with 95% confidence bounds):
p1 = 40.19 (3.088, 77.28)
p2 = 1042 (730.1, 1354)
问题是,如何挖掘 3.088, 77.28
值? foo
中描述了 p1
参数的置信区间,我想。
答案不是很明显。
您需要使用:
CI = confint(foo);
CI(1) => 3.088
CI(2) => 77.28
如果添加参数,您还可以更改置信区间:
CI99 = confint(foo,0.99) % The 99% confidence interval
正如@Dev-iL 所说:
The bigger picture here is MATLAB classes/objects. You should get into
the habit of doing methods(objectname)
, properties(objectname)
and
possibly even struct(objectname)
to see what is available to you.
methods(foo) % return methods available for foo (confint(foo))
properties(foo) % return available properties of foo (get(foo,<Property>))
struct(foo) % available structure values of foo (foo.<Value>)
我正在尝试处理拟合曲线的解释。
出于拟合目的,我使用 Matlab 的 fit
函数使用预定义模型(如 poly2
)或自定义模型(如 y=ax^4+bx^2+c
)没有任何问题。
我想确定每个参数(a
、b
和 c
)的质量,以便能够绘制数据点 (able)、拟合曲线 (able)和 "area where the curve can be with a given probability"(无法)。
如果我运行foo=fit(x,y,'poly1')
没有分号,那么return就是:
foo =
Linear model Poly1:
fitNi(x) = p1*x + p2
Coefficients (with 95% confidence bounds):
p1 = 40.19 (3.088, 77.28)
p2 = 1042 (730.1, 1354)
问题是,如何挖掘 3.088, 77.28
值? foo
中描述了 p1
参数的置信区间,我想。
答案不是很明显。
您需要使用:
CI = confint(foo);
CI(1) => 3.088
CI(2) => 77.28
如果添加参数,您还可以更改置信区间:
CI99 = confint(foo,0.99) % The 99% confidence interval
正如@Dev-iL 所说:
The bigger picture here is MATLAB classes/objects. You should get into the habit of doing
methods(objectname)
,properties(objectname)
and possibly evenstruct(objectname)
to see what is available to you.
methods(foo) % return methods available for foo (confint(foo))
properties(foo) % return available properties of foo (get(foo,<Property>))
struct(foo) % available structure values of foo (foo.<Value>)