使用 boto3 从 S3 存储桶中读取文件内容
Read file content from S3 bucket with boto3
我通过
读取了 S3 存储桶中的文件名
objs = boto3.client.list_objects(Bucket='my_bucket')
while 'Contents' in objs.keys():
objs_contents = objs['Contents']
for i in range(len(objs_contents)):
filename = objs_contents[i]['Key']
现在,我需要获取文件的实际内容,类似于 open(filename).readlines()
。什么是最好的方法?
boto3 提供了一种资源模型,可以使遍历对象等任务变得更加容易。不幸的是,StreamingBody 不提供 readline
或 readlines
。
s3 = boto3.resource('s3')
bucket = s3.Bucket('test-bucket')
# Iterates through all the objects, doing the pagination for you. Each obj
# is an ObjectSummary, so it doesn't contain the body. You'll need to call
# get to get the whole body.
for obj in bucket.objects.all():
key = obj.key
body = obj.get()['Body'].read()
当您想读取一个配置与默认配置不同的文件时,可以直接使用 mpu.aws.s3_read(s3path)
或复制粘贴代码:
def s3_read(source, profile_name=None):
"""
Read a file from an S3 source.
Parameters
----------
source : str
Path starting with s3://, e.g. 's3://bucket-name/key/foo.bar'
profile_name : str, optional
AWS profile
Returns
-------
content : bytes
botocore.exceptions.NoCredentialsError
Botocore is not able to find your credentials. Either specify
profile_name or add the environment variables AWS_ACCESS_KEY_ID,
AWS_SECRET_ACCESS_KEY and AWS_SESSION_TOKEN.
See https://boto3.readthedocs.io/en/latest/guide/configuration.html
"""
session = boto3.Session(profile_name=profile_name)
s3 = session.client('s3')
bucket_name, key = mpu.aws._s3_path_split(source)
s3_object = s3.get_object(Bucket=bucket_name, Key=key)
body = s3_object['Body']
return body.read()
您可以考虑 smart_open
模块,它支持迭代器:
from smart_open import smart_open
# stream lines from an S3 object
for line in smart_open('s3://mybucket/mykey.txt', 'rb'):
print(line.decode('utf8'))
和上下文管理器:
with smart_open('s3://mybucket/mykey.txt', 'rb') as s3_source:
for line in s3_source:
print(line.decode('utf8'))
s3_source.seek(0) # seek to the beginning
b1000 = s3_source.read(1000) # read 1000 bytes
在 https://pypi.org/project/smart_open/
找到 smart_open
如果您已经知道 filename
,您可以使用 boto3
内置 download_fileobj
import boto3
from io import BytesIO
session = boto3.Session()
s3_client = session.client("s3")
f = BytesIO()
s3_client.download_fileobj("bucket_name", "filename", f)
print(f.getvalue())
使用客户端而不是资源:
s3 = boto3.client('s3')
bucket='bucket_name'
result = s3.list_objects(Bucket = bucket, Prefix='/something/')
for o in result.get('Contents'):
data = s3.get_object(Bucket=bucket, Key=o.get('Key'))
contents = data['Body'].read()
print(contents.decode("utf-8"))
对我来说最好的方法是:
result = s3.list_objects(Bucket = s3_bucket, Prefix=s3_key)
for file in result.get('Contents'):
data = s3.get_object(Bucket=s3_bucket, Key=file.get('Key'))
contents = data['Body'].read()
#if Float types are not supported with dynamodb; use Decimal types instead
j = json.loads(contents, parse_float=Decimal)
for item in j:
timestamp = item['timestamp']
table.put_item(
Item={
'timestamp': timestamp
}
)
一旦你有了内容,你就可以 运行 通过另一个循环将它写入 dynamodb table 例如...
我通过
读取了 S3 存储桶中的文件名objs = boto3.client.list_objects(Bucket='my_bucket')
while 'Contents' in objs.keys():
objs_contents = objs['Contents']
for i in range(len(objs_contents)):
filename = objs_contents[i]['Key']
现在,我需要获取文件的实际内容,类似于 open(filename).readlines()
。什么是最好的方法?
boto3 提供了一种资源模型,可以使遍历对象等任务变得更加容易。不幸的是,StreamingBody 不提供 readline
或 readlines
。
s3 = boto3.resource('s3')
bucket = s3.Bucket('test-bucket')
# Iterates through all the objects, doing the pagination for you. Each obj
# is an ObjectSummary, so it doesn't contain the body. You'll need to call
# get to get the whole body.
for obj in bucket.objects.all():
key = obj.key
body = obj.get()['Body'].read()
当您想读取一个配置与默认配置不同的文件时,可以直接使用 mpu.aws.s3_read(s3path)
或复制粘贴代码:
def s3_read(source, profile_name=None):
"""
Read a file from an S3 source.
Parameters
----------
source : str
Path starting with s3://, e.g. 's3://bucket-name/key/foo.bar'
profile_name : str, optional
AWS profile
Returns
-------
content : bytes
botocore.exceptions.NoCredentialsError
Botocore is not able to find your credentials. Either specify
profile_name or add the environment variables AWS_ACCESS_KEY_ID,
AWS_SECRET_ACCESS_KEY and AWS_SESSION_TOKEN.
See https://boto3.readthedocs.io/en/latest/guide/configuration.html
"""
session = boto3.Session(profile_name=profile_name)
s3 = session.client('s3')
bucket_name, key = mpu.aws._s3_path_split(source)
s3_object = s3.get_object(Bucket=bucket_name, Key=key)
body = s3_object['Body']
return body.read()
您可以考虑 smart_open
模块,它支持迭代器:
from smart_open import smart_open
# stream lines from an S3 object
for line in smart_open('s3://mybucket/mykey.txt', 'rb'):
print(line.decode('utf8'))
和上下文管理器:
with smart_open('s3://mybucket/mykey.txt', 'rb') as s3_source:
for line in s3_source:
print(line.decode('utf8'))
s3_source.seek(0) # seek to the beginning
b1000 = s3_source.read(1000) # read 1000 bytes
在 https://pypi.org/project/smart_open/
找到smart_open
如果您已经知道 filename
,您可以使用 boto3
内置 download_fileobj
import boto3
from io import BytesIO
session = boto3.Session()
s3_client = session.client("s3")
f = BytesIO()
s3_client.download_fileobj("bucket_name", "filename", f)
print(f.getvalue())
使用客户端而不是资源:
s3 = boto3.client('s3')
bucket='bucket_name'
result = s3.list_objects(Bucket = bucket, Prefix='/something/')
for o in result.get('Contents'):
data = s3.get_object(Bucket=bucket, Key=o.get('Key'))
contents = data['Body'].read()
print(contents.decode("utf-8"))
对我来说最好的方法是:
result = s3.list_objects(Bucket = s3_bucket, Prefix=s3_key)
for file in result.get('Contents'):
data = s3.get_object(Bucket=s3_bucket, Key=file.get('Key'))
contents = data['Body'].read()
#if Float types are not supported with dynamodb; use Decimal types instead
j = json.loads(contents, parse_float=Decimal)
for item in j:
timestamp = item['timestamp']
table.put_item(
Item={
'timestamp': timestamp
}
)
一旦你有了内容,你就可以 运行 通过另一个循环将它写入 dynamodb table 例如...