JMH - 为什么我需要 Blackhole.consumeCPU()
JMH - why do I need Blackhole.consumeCPU()
我试图理解为什么使用 Blackhole.consumeCPU()
?
是明智的
我在 Google 上发现了一些关于 Blackhole.consumeCPU()
的信息 -->
Sometimes when we run run a benchmark across multiple threads we also
want to burn some cpu cycles to simulate CPU business when running our
code. This can't be a Thread.sleep as we really want to burn cpu. The
Blackhole.consumeCPU(long) gives us the capability to do this.
我的示例代码:
import java.util.concurrent.TimeUnit;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Level;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.Warmup;
import org.openjdk.jmh.infra.Blackhole;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;
@State(Scope.Thread)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public class StringConcatAvgBenchmark {
StringBuilder stringBuilder1;
StringBuilder stringBuilder2;
StringBuffer stringBuffer1;
StringBuffer stringBuffer2;
String string1;
String string2;
/*
* re-initializing the value after every iteration
*/
@Setup(Level.Iteration)
public void init() {
stringBuilder1 = new StringBuilder("foo");
stringBuilder2 = new StringBuilder("bar");
stringBuffer1 = new StringBuffer("foo");
stringBuffer2 = new StringBuffer("bar");
string1 = new String("foo");
string2 = new String("bar");
}
@Benchmark
@Warmup(iterations = 10)
@Measurement(iterations = 100)
@BenchmarkMode(Mode.AverageTime)
public StringBuilder stringBuilder() {
// operation is very thin and so consuming some CPU
Blackhole.consumeCPU(100);
return stringBuilder1.append(stringBuilder2);
// to avoid dead code optimization returning the value
}
@Benchmark
@Warmup(iterations = 10)
@Measurement(iterations = 100)
@BenchmarkMode(Mode.AverageTime)
public StringBuffer stringBuffer() {
Blackhole.consumeCPU(100);
// to avoid dead code optimization returning the value
return stringBuffer1.append(stringBuffer2);
}
@Benchmark
@Warmup(iterations = 10)
@Measurement(iterations = 100)
@BenchmarkMode(Mode.AverageTime)
public String stringPlus() {
Blackhole.consumeCPU(100);
return string1 + string2;
}
@Benchmark
@Warmup(iterations = 10)
@Measurement(iterations = 100)
@BenchmarkMode(Mode.AverageTime)
public String stringConcat() {
Blackhole.consumeCPU(100);
// to avoid dead code optimization returning the value
return string1.concat(string2);
}
public static void main(String[] args) throws RunnerException {
Options options = new OptionsBuilder()
.include(StringConcatAvgBenchmark.class.getSimpleName())
.threads(1).forks(1).shouldFailOnError(true).shouldDoGC(true)
.jvmArgs("-server").build();
new Runner(options).run();
}
}
为什么 blackhole.consumeCPU(100)
这个基准测试的结果更好?
编辑:
输出 blackhole.consumeCPU(100):
Benchmark Mode Cnt Score Error Units
StringBenchmark.stringBuffer avgt 10 398,843 ± 38,666 ns/op
StringBenchmark.stringBuilder avgt 10 387,543 ± 40,087 ns/op
StringBenchmark.stringConcat avgt 10 410,256 ± 33,194 ns/op
StringBenchmark.stringPlus avgt 10 386,472 ± 21,704 ns/op
输出无 blackhole.consumeCPU(100):
Benchmark Mode Cnt Score Error Units
StringBenchmark.stringBuffer avgt 10 51,225 ± 19,254 ns/op
StringBenchmark.stringBuilder avgt 10 49,548 ± 4,126 ns/op
StringBenchmark.stringConcat avgt 10 50,373 ± 1,408 ns/op
StringBenchmark.stringPlus avgt 10 87,942 ± 1,701 ns/op
我的问题是为什么这段代码的作者在这里使用 blackhole.consumeCPU(100)
我想我现在知道为什么了,因为基准测试速度太快了。
使用 blackhole.consumeCPU(100)
,您可以更好地衡量每个基准并获得更重要的结果。
对吗?
添加人为延迟通常不会提高基准。
但是,在某些情况下,您正在测量的操作正在争夺某些资源,您需要一个只消耗 CPU 并且希望不做任何其他事情的退避。参见例如案例在:
http://shipilev.net/blog/2014/nanotrusting-nanotime/
原始问题中的基准不是这种情况,因此我推测 Blackhole.consumeCPU
没有充分理由在那里使用,或者至少在评论中没有具体指出这个原因。不要那样做。
我试图理解为什么使用 Blackhole.consumeCPU()
?
我在 Google 上发现了一些关于 Blackhole.consumeCPU()
的信息 -->
Sometimes when we run run a benchmark across multiple threads we also want to burn some cpu cycles to simulate CPU business when running our code. This can't be a Thread.sleep as we really want to burn cpu. The Blackhole.consumeCPU(long) gives us the capability to do this.
我的示例代码:
import java.util.concurrent.TimeUnit;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Level;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.Warmup;
import org.openjdk.jmh.infra.Blackhole;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;
@State(Scope.Thread)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public class StringConcatAvgBenchmark {
StringBuilder stringBuilder1;
StringBuilder stringBuilder2;
StringBuffer stringBuffer1;
StringBuffer stringBuffer2;
String string1;
String string2;
/*
* re-initializing the value after every iteration
*/
@Setup(Level.Iteration)
public void init() {
stringBuilder1 = new StringBuilder("foo");
stringBuilder2 = new StringBuilder("bar");
stringBuffer1 = new StringBuffer("foo");
stringBuffer2 = new StringBuffer("bar");
string1 = new String("foo");
string2 = new String("bar");
}
@Benchmark
@Warmup(iterations = 10)
@Measurement(iterations = 100)
@BenchmarkMode(Mode.AverageTime)
public StringBuilder stringBuilder() {
// operation is very thin and so consuming some CPU
Blackhole.consumeCPU(100);
return stringBuilder1.append(stringBuilder2);
// to avoid dead code optimization returning the value
}
@Benchmark
@Warmup(iterations = 10)
@Measurement(iterations = 100)
@BenchmarkMode(Mode.AverageTime)
public StringBuffer stringBuffer() {
Blackhole.consumeCPU(100);
// to avoid dead code optimization returning the value
return stringBuffer1.append(stringBuffer2);
}
@Benchmark
@Warmup(iterations = 10)
@Measurement(iterations = 100)
@BenchmarkMode(Mode.AverageTime)
public String stringPlus() {
Blackhole.consumeCPU(100);
return string1 + string2;
}
@Benchmark
@Warmup(iterations = 10)
@Measurement(iterations = 100)
@BenchmarkMode(Mode.AverageTime)
public String stringConcat() {
Blackhole.consumeCPU(100);
// to avoid dead code optimization returning the value
return string1.concat(string2);
}
public static void main(String[] args) throws RunnerException {
Options options = new OptionsBuilder()
.include(StringConcatAvgBenchmark.class.getSimpleName())
.threads(1).forks(1).shouldFailOnError(true).shouldDoGC(true)
.jvmArgs("-server").build();
new Runner(options).run();
}
}
为什么 blackhole.consumeCPU(100)
这个基准测试的结果更好?
编辑:
输出 blackhole.consumeCPU(100):
Benchmark Mode Cnt Score Error Units
StringBenchmark.stringBuffer avgt 10 398,843 ± 38,666 ns/op
StringBenchmark.stringBuilder avgt 10 387,543 ± 40,087 ns/op
StringBenchmark.stringConcat avgt 10 410,256 ± 33,194 ns/op
StringBenchmark.stringPlus avgt 10 386,472 ± 21,704 ns/op
输出无 blackhole.consumeCPU(100):
Benchmark Mode Cnt Score Error Units
StringBenchmark.stringBuffer avgt 10 51,225 ± 19,254 ns/op
StringBenchmark.stringBuilder avgt 10 49,548 ± 4,126 ns/op
StringBenchmark.stringConcat avgt 10 50,373 ± 1,408 ns/op
StringBenchmark.stringPlus avgt 10 87,942 ± 1,701 ns/op
我的问题是为什么这段代码的作者在这里使用 blackhole.consumeCPU(100)
我想我现在知道为什么了,因为基准测试速度太快了。
使用 blackhole.consumeCPU(100)
,您可以更好地衡量每个基准并获得更重要的结果。
对吗?
添加人为延迟通常不会提高基准。
但是,在某些情况下,您正在测量的操作正在争夺某些资源,您需要一个只消耗 CPU 并且希望不做任何其他事情的退避。参见例如案例在: http://shipilev.net/blog/2014/nanotrusting-nanotime/
原始问题中的基准不是这种情况,因此我推测 Blackhole.consumeCPU
没有充分理由在那里使用,或者至少在评论中没有具体指出这个原因。不要那样做。