为什么添加额外的 'OR' 使得针对 MYSQL 视图的查询非常慢
Why is adding an extra 'OR' making a query against a MYSQL View very slow
我的 SQL 查询如下所示:
SELECT * FROM `userListView` `t`
WHERE (((((((email LIKE '%western millwork%') OR
(firstName LIKE '%western millwork%')) OR
(lastName LIKE '%western millwork%')) OR
(name LIKE '%western millwork%')) OR
(company LIKE '%western millwork%')) OR
(companyName LIKE '%western millwork%')) OR
(visualId LIKE '%western millwork%'))
AND (active='1')
ORDER BY `t`.`lastName`, `t`.`firstName` LIMIT 30
查询 运行 很好,直到我添加了关于 'companyName'.
的行
一旦发生这种情况,它就会从大约 1 秒变成 15 - 20 秒。
我认为这与视图的创建方式有关?所以有 'company'.'name' 然后 'userListView' 中有 'companyName' 这就是我要查询的内容。
创建视图的方式如下:
CREATE
ALGORITHM = UNDEFINED
DEFINER = `3form`@`192.168.%.%`
SQL SECURITY DEFINER
VIEW `userListView` AS
(SELECT
`user`.`uid` AS `uid`,
`user`.`active` AS `active`,
`user`.`email` AS `email`,
`user`.`fname` AS `firstName`,
`user`.`lname` AS `lastName`,
CONCAT(`user`.`fname`, ' ', `user`.`lname`) AS `name`,
`user`.`company` AS `company`,
`user`.`cust_id` AS `visualId`,
`user`.`repid` AS `repId`,
`user`.`srepid` AS `studioRepId`,
`user`.`lightartrepid` AS `lightArtRepId`,
`user`.`exteriorrepid` AS `exteriorRepId`,
`user`.`nationalrepid` AS `nationalRepId`,
`user`.`phone` AS `phone`,
`user`.`phone_ext` AS `phoneExt`,
`user`.`fax` AS `fax`,
`user`.`mobile` AS `mobile`,
`billingAddress`.`label` AS `billingAddressLabel`,
`billingAddress`.`addr` AS `billingAddressAddr`,
`billingAddress`.`addr2` AS `billingAddressAddr2`,
`billingAddress`.`city` AS `billingAddressCity`,
`billingAddress`.`state` AS `billingAddressState`,
`billingAddress`.`zip` AS `billingAddressZip`,
`billingAddress`.`country` AS `billingAddressCountry`,
`shippingAddress`.`label` AS `shippingAddressLabel`,
`shippingAddress`.`addr` AS `shippingAddressAddr`,
`shippingAddress`.`addr2` AS `shippingAddressAddr2`,
`shippingAddress`.`city` AS `shippingAddressCity`,
`shippingAddress`.`state` AS `shippingAddressState`,
`shippingAddress`.`zip` AS `shippingAddressZip`,
`shippingAddress`.`country` AS `shippingAddressCountry`,
`branch`.`bid` AS `bid`,
`branch`.`description` AS `branchDescription`,
`branch`.`repid` AS `branchRepId`,
`branch`.`studiorepid` AS `branchStudioRepId`,
`branch`.`lightartrepid` AS `branchLightArtRepId`,
`branch`.`exteriorrepid` AS `branchExteriorRepId`,
`branch`.`nationalrepid` AS `branchNationalRepId`,
`branchAddress`.`label` AS `branchAddressLabel`,
`branchAddress`.`addr` AS `branchAddressAddr`,
`branchAddress`.`addr2` AS `branchAddressAddr2`,
`branchAddress`.`city` AS `branchAddressCity`,
`branchAddress`.`state` AS `branchAddressState`,
`branchAddress`.`zip` AS `branchAddressZip`,
`branchAddress`.`country` AS `branchAddressCountry`,
`company`.`cid` AS `cid`,
`company`.`name` AS `companyName`,
`company`.`url` AS `companyUrl`,
`company`.`visual_id` AS `companyVisualId`,
`company`.`phone` AS `companyPhone`,
`company`.`fax` AS `companyFax`,
`companyAddress`.`label` AS `companyAddressLabel`,
`companyAddress`.`addr` AS `companyAddressAddr`,
`companyAddress`.`addr2` AS `companyAddressAddr2`,
`companyAddress`.`city` AS `companyAddressCity`,
`companyAddress`.`state` AS `companyAddressState`,
`companyAddress`.`zip` AS `companyAddressZip`,
`companyAddress`.`country` AS `companyAddressCountry`
FROM
((((((`users` `user`
LEFT JOIN `useraddr` `billingAddress` ON (((`user`.`uid` = `billingAddress`.`uid`)
AND (`user`.`billaddr` = (`billingAddress`.`label` COLLATE utf8_unicode_ci)))))
LEFT JOIN `useraddr` `shippingAddress` ON (((`user`.`uid` = `shippingAddress`.`uid`)
AND (`user`.`billaddr` = (`shippingAddress`.`label` COLLATE utf8_unicode_ci)))))
LEFT JOIN `branch` ON ((`user`.`bid` = `branch`.`bid`)))
LEFT JOIN `branch_address` `branchAddress` ON (((`branch`.`bid` = `branchAddress`.`bid`)
AND (`branch`.`shipto` = (`branchAddress`.`label` COLLATE utf8_unicode_ci)))))
LEFT JOIN `company` ON ((`company`.`cid` = `branch`.`cid`)))
LEFT JOIN `company_address` `companyAddress` ON (((`company`.`cid` = `companyAddress`.`cid`)
AND (`company`.`billto` = (`companyAddress`.`label` COLLATE utf8_unicode_ci))))))
想法是 'companyName' 会优先于 'company',但这还没有发生。因此,为什么原始查询同时查看两者。
知道问题出在哪里吗?
更新:
解释如下:
由于多种原因,此查询及其基础视图可能很慢。
column LIKE '%value%'
是减慢查询速度的最有效方法。它必须检查列中的每个值,并且不能利用任何索引查找。如果您可以将这些项目的部分或全部更改为 column LIKE 'value%'
,您将会看到改进。
OR
子句,尤其是与 LIKE '%value%'
结合使用时,查询速度也很慢。有时查询规划器必须对结果集进行多次传递。
- 您已将
OR
子句用括号分组,这告诉查询计划器您不信任它来决定 OR
子句链的哪些部分最有可能是最快的。去掉所有那些嵌套的括号。
- 您正在对
CONCAT()
操作的结果进行 LIKE
搜索。这保证了查询规划器无法优化上述问题。
- MySQL 没有物化视图。每次使用时都会重建视图。 MySQL 中的视图主要用于清晰度,而不是性能。
SELECT * FROM ... ORDER BY something LIMIT small-number
是复杂查询中的经典反模式。它执行整个查询,然后对其进行排序,然后丢弃大部分。
- 您在
JOIN ... ON
子句上使用了 COLLATE
修饰符。如果这些是必要的,那么您就无法在 ON
条件下使用索引:排序规则被嵌入到 MySQL 索引中。如果您的 COLLATE
子句覆盖默认排序规则,则无法使用索引。
- 但显着放缓的 'real' 问题更为隐蔽。起初,您过滤一个 table (
users
)。当您添加 companyName
时,它不需要同时过滤 VIEW
中的另一个 table。这意味着它必须保留第一个 table 的所有行,以防 companyName
匹配。解决方法是将 that OR
变成 UNION
.
- 此处列出的许多问题没有简单的加速。
在尝试解决此问题时,您可能需要将 SQL_NO_CACHE
添加到 select 语句中,如下所示
SELECT SQL_NO_CACHE whatever FROM whatever
那是因为 MySQL 检测到重复的查询,并且 returns 如果可以(并且 "Query cache" 已打开),先前的结果会很快(亚秒级)。
这种广角站内搜索,大概应该对每一大类数据分别处理。例如,您需要执行单独的单个 table 查询以从 user
和 company
table 中提取相关的 id 值,然后弄清楚如何获取相关数据。
我的 SQL 查询如下所示:
SELECT * FROM `userListView` `t`
WHERE (((((((email LIKE '%western millwork%') OR
(firstName LIKE '%western millwork%')) OR
(lastName LIKE '%western millwork%')) OR
(name LIKE '%western millwork%')) OR
(company LIKE '%western millwork%')) OR
(companyName LIKE '%western millwork%')) OR
(visualId LIKE '%western millwork%'))
AND (active='1')
ORDER BY `t`.`lastName`, `t`.`firstName` LIMIT 30
查询 运行 很好,直到我添加了关于 'companyName'.
的行一旦发生这种情况,它就会从大约 1 秒变成 15 - 20 秒。
我认为这与视图的创建方式有关?所以有 'company'.'name' 然后 'userListView' 中有 'companyName' 这就是我要查询的内容。
创建视图的方式如下:
CREATE
ALGORITHM = UNDEFINED
DEFINER = `3form`@`192.168.%.%`
SQL SECURITY DEFINER
VIEW `userListView` AS
(SELECT
`user`.`uid` AS `uid`,
`user`.`active` AS `active`,
`user`.`email` AS `email`,
`user`.`fname` AS `firstName`,
`user`.`lname` AS `lastName`,
CONCAT(`user`.`fname`, ' ', `user`.`lname`) AS `name`,
`user`.`company` AS `company`,
`user`.`cust_id` AS `visualId`,
`user`.`repid` AS `repId`,
`user`.`srepid` AS `studioRepId`,
`user`.`lightartrepid` AS `lightArtRepId`,
`user`.`exteriorrepid` AS `exteriorRepId`,
`user`.`nationalrepid` AS `nationalRepId`,
`user`.`phone` AS `phone`,
`user`.`phone_ext` AS `phoneExt`,
`user`.`fax` AS `fax`,
`user`.`mobile` AS `mobile`,
`billingAddress`.`label` AS `billingAddressLabel`,
`billingAddress`.`addr` AS `billingAddressAddr`,
`billingAddress`.`addr2` AS `billingAddressAddr2`,
`billingAddress`.`city` AS `billingAddressCity`,
`billingAddress`.`state` AS `billingAddressState`,
`billingAddress`.`zip` AS `billingAddressZip`,
`billingAddress`.`country` AS `billingAddressCountry`,
`shippingAddress`.`label` AS `shippingAddressLabel`,
`shippingAddress`.`addr` AS `shippingAddressAddr`,
`shippingAddress`.`addr2` AS `shippingAddressAddr2`,
`shippingAddress`.`city` AS `shippingAddressCity`,
`shippingAddress`.`state` AS `shippingAddressState`,
`shippingAddress`.`zip` AS `shippingAddressZip`,
`shippingAddress`.`country` AS `shippingAddressCountry`,
`branch`.`bid` AS `bid`,
`branch`.`description` AS `branchDescription`,
`branch`.`repid` AS `branchRepId`,
`branch`.`studiorepid` AS `branchStudioRepId`,
`branch`.`lightartrepid` AS `branchLightArtRepId`,
`branch`.`exteriorrepid` AS `branchExteriorRepId`,
`branch`.`nationalrepid` AS `branchNationalRepId`,
`branchAddress`.`label` AS `branchAddressLabel`,
`branchAddress`.`addr` AS `branchAddressAddr`,
`branchAddress`.`addr2` AS `branchAddressAddr2`,
`branchAddress`.`city` AS `branchAddressCity`,
`branchAddress`.`state` AS `branchAddressState`,
`branchAddress`.`zip` AS `branchAddressZip`,
`branchAddress`.`country` AS `branchAddressCountry`,
`company`.`cid` AS `cid`,
`company`.`name` AS `companyName`,
`company`.`url` AS `companyUrl`,
`company`.`visual_id` AS `companyVisualId`,
`company`.`phone` AS `companyPhone`,
`company`.`fax` AS `companyFax`,
`companyAddress`.`label` AS `companyAddressLabel`,
`companyAddress`.`addr` AS `companyAddressAddr`,
`companyAddress`.`addr2` AS `companyAddressAddr2`,
`companyAddress`.`city` AS `companyAddressCity`,
`companyAddress`.`state` AS `companyAddressState`,
`companyAddress`.`zip` AS `companyAddressZip`,
`companyAddress`.`country` AS `companyAddressCountry`
FROM
((((((`users` `user`
LEFT JOIN `useraddr` `billingAddress` ON (((`user`.`uid` = `billingAddress`.`uid`)
AND (`user`.`billaddr` = (`billingAddress`.`label` COLLATE utf8_unicode_ci)))))
LEFT JOIN `useraddr` `shippingAddress` ON (((`user`.`uid` = `shippingAddress`.`uid`)
AND (`user`.`billaddr` = (`shippingAddress`.`label` COLLATE utf8_unicode_ci)))))
LEFT JOIN `branch` ON ((`user`.`bid` = `branch`.`bid`)))
LEFT JOIN `branch_address` `branchAddress` ON (((`branch`.`bid` = `branchAddress`.`bid`)
AND (`branch`.`shipto` = (`branchAddress`.`label` COLLATE utf8_unicode_ci)))))
LEFT JOIN `company` ON ((`company`.`cid` = `branch`.`cid`)))
LEFT JOIN `company_address` `companyAddress` ON (((`company`.`cid` = `companyAddress`.`cid`)
AND (`company`.`billto` = (`companyAddress`.`label` COLLATE utf8_unicode_ci))))))
想法是 'companyName' 会优先于 'company',但这还没有发生。因此,为什么原始查询同时查看两者。
知道问题出在哪里吗?
更新:
解释如下:
由于多种原因,此查询及其基础视图可能很慢。
column LIKE '%value%'
是减慢查询速度的最有效方法。它必须检查列中的每个值,并且不能利用任何索引查找。如果您可以将这些项目的部分或全部更改为column LIKE 'value%'
,您将会看到改进。OR
子句,尤其是与LIKE '%value%'
结合使用时,查询速度也很慢。有时查询规划器必须对结果集进行多次传递。- 您已将
OR
子句用括号分组,这告诉查询计划器您不信任它来决定OR
子句链的哪些部分最有可能是最快的。去掉所有那些嵌套的括号。 - 您正在对
CONCAT()
操作的结果进行LIKE
搜索。这保证了查询规划器无法优化上述问题。 - MySQL 没有物化视图。每次使用时都会重建视图。 MySQL 中的视图主要用于清晰度,而不是性能。
SELECT * FROM ... ORDER BY something LIMIT small-number
是复杂查询中的经典反模式。它执行整个查询,然后对其进行排序,然后丢弃大部分。- 您在
JOIN ... ON
子句上使用了COLLATE
修饰符。如果这些是必要的,那么您就无法在ON
条件下使用索引:排序规则被嵌入到 MySQL 索引中。如果您的COLLATE
子句覆盖默认排序规则,则无法使用索引。 - 但显着放缓的 'real' 问题更为隐蔽。起初,您过滤一个 table (
users
)。当您添加companyName
时,它不需要同时过滤VIEW
中的另一个 table。这意味着它必须保留第一个 table 的所有行,以防companyName
匹配。解决方法是将 thatOR
变成UNION
. - 此处列出的许多问题没有简单的加速。
在尝试解决此问题时,您可能需要将 SQL_NO_CACHE
添加到 select 语句中,如下所示
SELECT SQL_NO_CACHE whatever FROM whatever
那是因为 MySQL 检测到重复的查询,并且 returns 如果可以(并且 "Query cache" 已打开),先前的结果会很快(亚秒级)。
这种广角站内搜索,大概应该对每一大类数据分别处理。例如,您需要执行单独的单个 table 查询以从 user
和 company
table 中提取相关的 id 值,然后弄清楚如何获取相关数据。