Tensorflow CNN 模型没有训练?恒定损失和准确性

Tensorflow CNN model not training? Constant loss and accuracy

我已经使用 this 作为基础构建了一个模型。

还有 this code 的火车部分。

此模型不进行训练,每次迭代始终给出 cost/loss 输出。

我认为它没有学到任何东西。

我已经检查了一些常见的东西,比如随机输入。 确保每批都是新的。

知道为什么吗?

这是我的code.

输出

Iter 1280, Minibatch Loss= 4.615120, Training Accuracy= 0.03125
Testing Accuracy: 0.0
Iter 2560, Minibatch Loss= 4.615120, Training Accuracy= 0.00000
Testing Accuracy: 0.0
Iter 3840, Minibatch Loss= 4.615120, Training Accuracy= 0.00000
Testing Accuracy: 0.015625
Iter 5120, Minibatch Loss= 4.615120, Training Accuracy= 0.00000
Testing Accuracy: 0.078125
Iter 6400, Minibatch Loss= 4.615120, Training Accuracy= 0.03125
Testing Accuracy: 0.0
Iter 7680, Minibatch Loss= 4.615120, Training Accuracy= 0.03125
Testing Accuracy: 0.015625
Iter 8960, Minibatch Loss= 4.615120, Training Accuracy= 0.00000
Testing Accuracy: 0.0
Iter 10240, Minibatch Loss= 4.615120, Training Accuracy= 0.00000
Testing Accuracy: 0.015625
Iter 11520, Minibatch Loss= 4.615120, Training Accuracy= 0.00000
Testing Accuracy: 0.0
Iter 12800, Minibatch Loss= 4.615120, Training Accuracy= 0.01562
Testing Accuracy: 0.03125
Iter 14080, Minibatch Loss= 4.615120, Training Accuracy= 0.01562
Testing Accuracy: 0.0
Iter 15360, Minibatch Loss= 4.615120, Training Accuracy= 0.01562
Testing Accuracy: 0.0

您开始的代码只是前向和后向传递的基准,并非用于训练。您应该从实际训练模型的示例开始,而忽略基准代码。

从一个完全可用的训练示例程序开始,而不是尝试组合两个部分,您可能会更轻松。