如何访问由 RandomForestClassifier(spark.ml-版本)创建的模型中的单个树?
How to access individual trees in a model created by RandomForestClassifier (spark.ml-version)?
如何访问由 Spark ML RandomForestClassifier 生成的模型中的单个树?我正在使用 Scala 版本的 RandomForestClassifier。
实际上它有trees
属性:
import org.apache.spark.ml.attribute.NominalAttribute
import org.apache.spark.ml.classification.{
RandomForestClassificationModel, RandomForestClassifier,
DecisionTreeClassificationModel
}
val meta = NominalAttribute
.defaultAttr
.withName("label")
.withValues("0.0", "1.0")
.toMetadata
val data = sqlContext.read.format("libsvm")
.load("data/mllib/sample_libsvm_data.txt")
.withColumn("label", $"label".as("label", meta))
val rf: RandomForestClassifier = new RandomForestClassifier()
.setLabelCol("label")
.setFeaturesCol("features")
val trees: Array[DecisionTreeClassificationModel] = rf.fit(data).trees.collect {
case t: DecisionTreeClassificationModel => t
}
如您所见,唯一的问题是正确设置类型,以便我们实际使用这些类型:
trees.head.transform(data).show(3)
// +-----+--------------------+-------------+-----------+----------+
// |label| features|rawPrediction|probability|prediction|
// +-----+--------------------+-------------+-----------+----------+
// | 0.0|(692,[127,128,129...| [33.0,0.0]| [1.0,0.0]| 0.0|
// | 1.0|(692,[158,159,160...| [0.0,59.0]| [0.0,1.0]| 1.0|
// | 1.0|(692,[124,125,126...| [0.0,59.0]| [0.0,1.0]| 1.0|
// +-----+--------------------+-------------+-----------+----------+
// only showing top 3 rows
注:
如果您使用管道,您也可以提取单个树:
import org.apache.spark.ml.Pipeline
val model = new Pipeline().setStages(Array(rf)).fit(data)
// There is only one stage and know its type
// but lets be thorough
val rfModelOption = model.stages.headOption match {
case Some(m: RandomForestClassificationModel) => Some(m)
case _ => None
}
val trees = rfModelOption.map {
_.trees // ... as before
}.getOrElse(Array())
如何访问由 Spark ML RandomForestClassifier 生成的模型中的单个树?我正在使用 Scala 版本的 RandomForestClassifier。
实际上它有trees
属性:
import org.apache.spark.ml.attribute.NominalAttribute
import org.apache.spark.ml.classification.{
RandomForestClassificationModel, RandomForestClassifier,
DecisionTreeClassificationModel
}
val meta = NominalAttribute
.defaultAttr
.withName("label")
.withValues("0.0", "1.0")
.toMetadata
val data = sqlContext.read.format("libsvm")
.load("data/mllib/sample_libsvm_data.txt")
.withColumn("label", $"label".as("label", meta))
val rf: RandomForestClassifier = new RandomForestClassifier()
.setLabelCol("label")
.setFeaturesCol("features")
val trees: Array[DecisionTreeClassificationModel] = rf.fit(data).trees.collect {
case t: DecisionTreeClassificationModel => t
}
如您所见,唯一的问题是正确设置类型,以便我们实际使用这些类型:
trees.head.transform(data).show(3)
// +-----+--------------------+-------------+-----------+----------+
// |label| features|rawPrediction|probability|prediction|
// +-----+--------------------+-------------+-----------+----------+
// | 0.0|(692,[127,128,129...| [33.0,0.0]| [1.0,0.0]| 0.0|
// | 1.0|(692,[158,159,160...| [0.0,59.0]| [0.0,1.0]| 1.0|
// | 1.0|(692,[124,125,126...| [0.0,59.0]| [0.0,1.0]| 1.0|
// +-----+--------------------+-------------+-----------+----------+
// only showing top 3 rows
注:
如果您使用管道,您也可以提取单个树:
import org.apache.spark.ml.Pipeline
val model = new Pipeline().setStages(Array(rf)).fit(data)
// There is only one stage and know its type
// but lets be thorough
val rfModelOption = model.stages.headOption match {
case Some(m: RandomForestClassificationModel) => Some(m)
case _ => None
}
val trees = rfModelOption.map {
_.trees // ... as before
}.getOrElse(Array())