计算 R 中 PCA 的转换?

Calculate the transformation of a PCA in R?

我正在寻找表示从数据集到其 PC 的映射的权重。目的是设置一个"calibrated" fixed space e.g.三种葡萄酒以及新的观察结果,例如引入了一种新的葡萄酒,它可以在先前校准的 space 内分配,而无需更改固定的 PC 值。因此,可以通过执行应用于前三种排序的转换来适当地分配新的观察值。

 library(ggbiplot)
 data(wine)
 wine.pca <- prcomp(wine, center = TRUE, scale. = TRUE)
 print(ggbiplot(wine.pca, obs.scale = 1, var.scale = 1, groups =   wine.class, ellipse = TRUE, circle = TRUE))

编辑: 将葡萄酒数据集拆分为训练数据,以获得我所谓的校准 space。

samp <- sample(nrow(wine), nrow(wine)*0.75)
wine.train <- wine[samp,]

然后使用训练数据对要验证的数据集进行子集化,例如

wine.valid <- wine[-samp,]

#PCA on training data
wine.train.pca <- prcomp(wine.train, center = TRUE, scale. = TRUE)
#use the transformation matrix from the training data to predict the validation data
pred <- predict(wine.train.pca, newdata = wine.valid)

随后,如何表示训练产生的校准 space 和转换的 validation/testing 数据在此 thread 中解决。

使用 prcomppredict 函数很容易做到这一点。下面我通过将您的葡萄酒数据分成两部分来展示性能;训练和验证数据集。然后将在训练集上使用 prcomp 拟合 PCA 对验证 PCA 坐标的预测与从完整数据集导出的相同坐标进行比较:

library(ggbiplot)
data(wine)

# pca on whole dataset
wine.pca <- prcomp(wine, center = TRUE, scale. = TRUE)

# pca on training part of dataset, then project new data onto pca coordinates 
set.seed(1)
samp <- sample(nrow(wine), nrow(wine)*0.75)
wine.train <- wine[samp,]
wine.valid <- wine[-samp,]
wine.train.pca <- prcomp(wine.train, center = TRUE, scale. = TRUE)
pred <- predict(wine.train.pca, newdata = wine.valid)

# plot original vs predicted pca coordinates
matplot(wine.pca$x[-samp,,1:4], pred[,1:4])

您还可以查看预测坐标和原始坐标之间的相关性,发现它们对于领先的 PC 非常高:

# correlation of predicted coordinates
abs(diag(cor(wine.pca$x[-samp,], pred[,])))
#       PC1       PC2       PC3       PC4       PC5       PC6       PC7       PC8       PC9      PC10 
# 0.9991291 0.9955028 0.9882540 0.9418268 0.9681989 0.9770390 0.9603593 0.8991734 0.8090762 0.9326917 
#      PC11      PC12      PC13 
# 0.9270951 0.9596963 0.9397388 

编辑:

这里是一个使用randomForest分类的例子:

library(ggbiplot)
data(wine)
wine$class <- wine.class

# install.packages("randomForest")
library(randomForest)

set.seed(1)
train <- sample(nrow(wine), nrow(wine)*0.5)
valid <- seq(nrow(wine))[-train]
winetrain <- wine[train,]
winevalid <- wine[valid,]

modfit <- randomForest(class~., data=winetrain, nTree=500)
pred <- predict(modfit, newdata=winevalid, type='class')

每个变量的重要性可以通过以下方式返回:

importance(modfit) # importance of variables in predition
#                MeanDecreaseGini
# Alcohol               8.5032770
# MalicAcid             1.3122286
# Ash                   0.6827924
# AlcAsh                1.9517369
# Mg                    1.3632713
# Phenols               2.7943536
# Flav                  6.5798205
# NonFlavPhenols        1.1712744
# Proa                  1.2412928
# Color                 8.7097870
# Hue                   5.2674082
# OD                    6.6101764
# Proline              10.7032775

并且,预测准确率返回如下:

TAB <- table(pred, winevalid$class) # table of preditions vs. original classifications
TAB
# pred         barolo grignolino barbera
#   barolo         29          1       0
#   grignolino      1         30       0
#   barbera         0          1      27

sum(diag(TAB)) / sum(TAB) # overall accuracy
# [1] 0.9662921