A* 寻路非常慢
A* Pathfinding very slow
我为android写了一个寻路算法。 运行ning 似乎很慢,我不明白为什么。我以前问过类似的问题,但没有得到我想要的答案(从那以后我更改了代码)。这是我的寻路 class :
public class Pathfinding {
private static Node[][] grid;
private static NodeComparator nodeComparator;
static{
nodeComparator = new NodeComparator();
}
public static class NodeComparator implements Comparator<Node> {
@Override
public int compare(Node node1, Node node2) {
if(node1.F > node2.F){
return 1;
}
else if(node1.F < node2.F){
return -1;
}
else{
return 0;
}
}
}
public static Array<Node> findPath(Node start, Node finish, Node[][] _grid) {
Array<Node> path = new Array<Node>();
Array<Node> openList = new Array<Node>();
Array<Node> closedList = new Array<Node>();
grid = _grid;
if(start == null){
return path;
}
if(finish == null){
return path;
}
Node currentNode = start;
currentNode.G = 0;
currentNode.H = getHeuristic(currentNode, finish);
currentNode.parent = null;
openList.add(currentNode);
System.out.println("PATHFINDING STARTED ||| startPos : " + start.position + " finishPos : " + finish.position);
while (openList.size > 0) {
//Sorts open nodes lowest F value to heighest
openList.sort(nodeComparator);
currentNode = openList.first();
//If path is found, return
if (currentNode == finish) {
System.out.println("PATH FOUND...RETURNING -gat5");
return constructPath(currentNode);
}
openList.removeValue(currentNode, true);
closedList.add(currentNode);
int counter = 0;
for (Node neighbor : getNeighbors(currentNode)) {
if (!closedList.contains(neighbor, true)) { //If neighbor not in closed list
if(neighbor != null) { //If neighbor not wall
if(counter == 4){
counter++;
}
int movementCost = checkMovementCost(counter);
if (openList.contains(neighbor, true)) {
if (currentNode.G + movementCost < neighbor.G) {
neighbor.parent = currentNode;
}
} else {
openList.add(neighbor);
neighbor.parent = currentNode;
neighbor.H = getHeuristic(currentNode, finish);
neighbor.G = neighbor.parent.G + movementCost;
}
counter++;
}
}
}
System.out.println(counter);
}
System.out.println("NO FINAL");
System.out.println("NO PATH FOUND RETURNING...");
path.add(start);
return path;
}
private static int checkMovementCost(int neighbor) {
int movementCost = 0;
switch (neighbor) {
//Diagonal
case 0:
case 2:
case 6:
case 8:
movementCost = 16;
break;
//Not Diagonal
case 1:
case 3:
case 5:
case 7:
movementCost = 10;
break;
}
return movementCost;
}
public static Array<Node> constructPath(Node finish) {
Array<Node> pathNodes = new Array<Node>();
Node currentNode = finish;
pathNodes.add(currentNode);
while (currentNode.parent != null) {
currentNode = currentNode.parent;
pathNodes.add(currentNode);
}
return pathNodes;
}
private static float getHeuristic(Node start, Node finish){
int H = 0;
H += Math.abs(start.position.x - finish.position.x);
H += Math.abs(start.position.y - finish.position.y);
return H;
}
private static Array<Node> getNeighbors(Node node){
Array<Node> neighbors = new Array<Node>();
int x = (int)node.position.x;
int y = (int)node.position.y;
if(x - 1 > 0 && x - 1 < grid.length && y + 1 < grid.length && y + 1 > 0){
neighbors.add(grid[x - 1][y + 1]);
}
else{
neighbors.add(null);
}
if(x > 0 && x < grid.length && y + 1 < grid.length && y + 1 > 0){
neighbors.add(grid[x][y + 1]);
}
else{
neighbors.add(null);
}
if(x + 1 > 0 && x + 1 < grid.length && y + 1 < grid.length && y + 1 > 0){
neighbors.add(grid[x + 1][y + 1]);
}
else{
neighbors.add(null);
}
if(x - 1 > 0 && x - 1 < grid.length && y < grid.length && y > 0){
neighbors.add(grid[x - 1][y]);
}
else{
neighbors.add(null);
}
if(x > 0 && x < grid.length && y < grid.length && y > 0){
neighbors.add(grid[x][y]);
}
else{
neighbors.add(null);
}
if(x + 1 > 0 && x + 1 < grid.length && y < grid.length && y > 0){
neighbors.add(grid[x + 1][y]);
}
else{
neighbors.add(null);
}
if(x - 1 > 0 && x - 1 < grid.length && y - 1 < grid.length && y - 1> 0){
neighbors.add(grid[x - 1][y - 1]);
}
else{
neighbors.add(null);
}
if(x > 0 && x < grid.length && y - 1 < grid.length && y - 1 > 0){
neighbors.add(grid[x][y - 1]);
}
else{
neighbors.add(null);
}
if(x + 1 > 0 && x + 1 < grid.length && y - 1 < grid.length && y - 1 > 0){
neighbors.add(grid[x + 1][y - 1]);
}
else{
neighbors.add(null);
}
return neighbors;
}
}
非常感谢您的帮助!
**更多信息:**当我只运行这个算法一次时,它工作正常。但是一旦我 运行 它 3 次以上,它就会开始快速丢失帧率。我使用的网格是 200x200。
如果您对路径的评估像您指出的那样简单,那么算法的缓慢可能与您在算法的每次迭代中所做的排序有关。
//Sorts open nodes lowest F value to heighest
openList.sort(nodeComparator);
仅使用 PriorityQueue
来命令要由算法扩展的节点会导致更有效的实现。如果需要,请查看 the A* algorithm implemented in the library hipster4j 的实现细节。这也适用于 Android。
希望我的回答对您有所帮助。
我为android写了一个寻路算法。 运行ning 似乎很慢,我不明白为什么。我以前问过类似的问题,但没有得到我想要的答案(从那以后我更改了代码)。这是我的寻路 class :
public class Pathfinding {
private static Node[][] grid;
private static NodeComparator nodeComparator;
static{
nodeComparator = new NodeComparator();
}
public static class NodeComparator implements Comparator<Node> {
@Override
public int compare(Node node1, Node node2) {
if(node1.F > node2.F){
return 1;
}
else if(node1.F < node2.F){
return -1;
}
else{
return 0;
}
}
}
public static Array<Node> findPath(Node start, Node finish, Node[][] _grid) {
Array<Node> path = new Array<Node>();
Array<Node> openList = new Array<Node>();
Array<Node> closedList = new Array<Node>();
grid = _grid;
if(start == null){
return path;
}
if(finish == null){
return path;
}
Node currentNode = start;
currentNode.G = 0;
currentNode.H = getHeuristic(currentNode, finish);
currentNode.parent = null;
openList.add(currentNode);
System.out.println("PATHFINDING STARTED ||| startPos : " + start.position + " finishPos : " + finish.position);
while (openList.size > 0) {
//Sorts open nodes lowest F value to heighest
openList.sort(nodeComparator);
currentNode = openList.first();
//If path is found, return
if (currentNode == finish) {
System.out.println("PATH FOUND...RETURNING -gat5");
return constructPath(currentNode);
}
openList.removeValue(currentNode, true);
closedList.add(currentNode);
int counter = 0;
for (Node neighbor : getNeighbors(currentNode)) {
if (!closedList.contains(neighbor, true)) { //If neighbor not in closed list
if(neighbor != null) { //If neighbor not wall
if(counter == 4){
counter++;
}
int movementCost = checkMovementCost(counter);
if (openList.contains(neighbor, true)) {
if (currentNode.G + movementCost < neighbor.G) {
neighbor.parent = currentNode;
}
} else {
openList.add(neighbor);
neighbor.parent = currentNode;
neighbor.H = getHeuristic(currentNode, finish);
neighbor.G = neighbor.parent.G + movementCost;
}
counter++;
}
}
}
System.out.println(counter);
}
System.out.println("NO FINAL");
System.out.println("NO PATH FOUND RETURNING...");
path.add(start);
return path;
}
private static int checkMovementCost(int neighbor) {
int movementCost = 0;
switch (neighbor) {
//Diagonal
case 0:
case 2:
case 6:
case 8:
movementCost = 16;
break;
//Not Diagonal
case 1:
case 3:
case 5:
case 7:
movementCost = 10;
break;
}
return movementCost;
}
public static Array<Node> constructPath(Node finish) {
Array<Node> pathNodes = new Array<Node>();
Node currentNode = finish;
pathNodes.add(currentNode);
while (currentNode.parent != null) {
currentNode = currentNode.parent;
pathNodes.add(currentNode);
}
return pathNodes;
}
private static float getHeuristic(Node start, Node finish){
int H = 0;
H += Math.abs(start.position.x - finish.position.x);
H += Math.abs(start.position.y - finish.position.y);
return H;
}
private static Array<Node> getNeighbors(Node node){
Array<Node> neighbors = new Array<Node>();
int x = (int)node.position.x;
int y = (int)node.position.y;
if(x - 1 > 0 && x - 1 < grid.length && y + 1 < grid.length && y + 1 > 0){
neighbors.add(grid[x - 1][y + 1]);
}
else{
neighbors.add(null);
}
if(x > 0 && x < grid.length && y + 1 < grid.length && y + 1 > 0){
neighbors.add(grid[x][y + 1]);
}
else{
neighbors.add(null);
}
if(x + 1 > 0 && x + 1 < grid.length && y + 1 < grid.length && y + 1 > 0){
neighbors.add(grid[x + 1][y + 1]);
}
else{
neighbors.add(null);
}
if(x - 1 > 0 && x - 1 < grid.length && y < grid.length && y > 0){
neighbors.add(grid[x - 1][y]);
}
else{
neighbors.add(null);
}
if(x > 0 && x < grid.length && y < grid.length && y > 0){
neighbors.add(grid[x][y]);
}
else{
neighbors.add(null);
}
if(x + 1 > 0 && x + 1 < grid.length && y < grid.length && y > 0){
neighbors.add(grid[x + 1][y]);
}
else{
neighbors.add(null);
}
if(x - 1 > 0 && x - 1 < grid.length && y - 1 < grid.length && y - 1> 0){
neighbors.add(grid[x - 1][y - 1]);
}
else{
neighbors.add(null);
}
if(x > 0 && x < grid.length && y - 1 < grid.length && y - 1 > 0){
neighbors.add(grid[x][y - 1]);
}
else{
neighbors.add(null);
}
if(x + 1 > 0 && x + 1 < grid.length && y - 1 < grid.length && y - 1 > 0){
neighbors.add(grid[x + 1][y - 1]);
}
else{
neighbors.add(null);
}
return neighbors;
}
}
非常感谢您的帮助!
**更多信息:**当我只运行这个算法一次时,它工作正常。但是一旦我 运行 它 3 次以上,它就会开始快速丢失帧率。我使用的网格是 200x200。
如果您对路径的评估像您指出的那样简单,那么算法的缓慢可能与您在算法的每次迭代中所做的排序有关。
//Sorts open nodes lowest F value to heighest
openList.sort(nodeComparator);
仅使用 PriorityQueue
来命令要由算法扩展的节点会导致更有效的实现。如果需要,请查看 the A* algorithm implemented in the library hipster4j 的实现细节。这也适用于 Android。
希望我的回答对您有所帮助。