Kafka主题分区和Spark执行器映射

Kafka topic partition and Spark executor mapping

我正在使用带有 kafka 主题的 spark streaming。主题是用 5 个分区创建的。我的所有消息都使用 tablename 作为键发布到 kafka 主题。 鉴于此,我假设 table 的所有消息都应该转到同一个分区。 但是我在 spark 日志消息中注意到相同 table 有时会转到执行者的节点 1,有时会转到执行者的节点 2。

我 运行 使用以下命令在 yarn-cluster 模式下编写代码:

spark-submit --name DataProcessor --master yarn-cluster --files /opt/ETL_JAR/executor-log4j-spark.xml,/opt/ETL_JAR/driver-log4j-spark.xml,/opt/ETL_JAR/application.properties --conf "spark.driver.extraJavaOptions=-Dlog4j.configuration=driver-log4j-spark.xml" --conf "spark.executor.extraJavaOptions=-Dlog4j.configuration=executor-log4j-spark.xml" --class com.test.DataProcessor /opt/ETL_JAR/etl-all-1.0.jar

并且此提交在 node-1 上创建了 1 个驱动程序,在 node-1 和 node-2 上创建了 2 个执行程序。

我不希望 node-1 和 node-2 执行程序读取同一个分区。但这正在发生

也尝试了以下配置来指定消费者组但没有区别。

kafkaParams.put("group.id", "app1");

这就是我们使用 createDirectStream 方法创建流的方式 *不是通过动物园管理员。

    HashMap<String, String> kafkaParams = new HashMap<String, String>();
    kafkaParams.put("metadata.broker.list", brokers);
    kafkaParams.put("auto.offset.reset", "largest");
    kafkaParams.put("group.id", "app1");

        JavaPairInputDStream<String, String> messages = KafkaUtils.createDirectStream(
                jssc, 
                String.class, 
                String.class,
                StringDecoder.class, 
                StringDecoder.class, 
                kafkaParams, 
                topicsSet
        );

完整代码:

import java.io.Serializable;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;

import org.apache.commons.lang3.StringUtils;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.api.java.JavaStreamingContextFactory;
import org.apache.spark.streaming.kafka.KafkaUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import kafka.serializer.StringDecoder;
import scala.Tuple2;

public class DataProcessor2 implements Serializable {
    private static final long serialVersionUID = 3071125481526170241L;

    private static Logger log = LoggerFactory.getLogger("DataProcessor");

    public static void main(String[] args) {
        final String sparkCheckPointDir = ApplicationProperties.getProperty(Consts.SPARK_CHECKPOINTING_DIR);
        DataProcessorContextFactory3 factory = new DataProcessorContextFactory3();
        JavaStreamingContext jssc = JavaStreamingContext.getOrCreate(sparkCheckPointDir, factory);

        // Start the process
        jssc.start();
        jssc.awaitTermination();
    }

}

class DataProcessorContextFactory3 implements JavaStreamingContextFactory, Serializable {
    private static final long serialVersionUID = 6070911284191531450L;

    private static Logger logger = LoggerFactory.getLogger(DataProcessorContextFactory.class);

    DataProcessorContextFactory3() {
    }

    @Override
    public JavaStreamingContext create() {
        logger.debug("creating new context..!");

        final String brokers = ApplicationProperties.getProperty(Consts.KAFKA_BROKERS_NAME);
        final String topic = ApplicationProperties.getProperty(Consts.KAFKA_TOPIC_NAME);
        final String app = "app1";
        final String offset = ApplicationProperties.getProperty(Consts.KAFKA_CONSUMER_OFFSET, "largest");

        logger.debug("Data processing configuration. brokers={}, topic={}, app={}, offset={}", brokers, topic, app,
                offset);
        if (StringUtils.isBlank(brokers) || StringUtils.isBlank(topic) || StringUtils.isBlank(app)) {
            System.err.println("Usage: DataProcessor <brokers> <topic>\n" + Consts.KAFKA_BROKERS_NAME
                    + " is a list of one or more Kafka brokers separated by comma\n" + Consts.KAFKA_TOPIC_NAME
                    + " is a kafka topic to consume from \n\n\n");
            System.exit(1);
        }
        final String majorVersion = "1.0";
        final String minorVersion = "3";
        final String version = majorVersion + "." + minorVersion;
        final String applicationName = "DataProcessor-" + topic + "-" + version;
        // for dev environment
         SparkConf sparkConf = new SparkConf().setMaster("local[*]").setAppName(applicationName);
        // for cluster environment
        //SparkConf sparkConf = new SparkConf().setAppName(applicationName);
        final long sparkBatchDuration = Long
                .valueOf(ApplicationProperties.getProperty(Consts.SPARK_BATCH_DURATION, "10"));

        final String sparkCheckPointDir = ApplicationProperties.getProperty(Consts.SPARK_CHECKPOINTING_DIR);

        JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, Durations.seconds(sparkBatchDuration));
        logger.debug("setting checkpoint directory={}", sparkCheckPointDir);
        jssc.checkpoint(sparkCheckPointDir);

        HashSet<String> topicsSet = new HashSet<String>(Arrays.asList(topic.split(",")));

        HashMap<String, String> kafkaParams = new HashMap<String, String>();
        kafkaParams.put("metadata.broker.list", brokers);
        kafkaParams.put("auto.offset.reset", offset);
        kafkaParams.put("group.id", "app1");

//          @formatter:off
            JavaPairInputDStream<String, String> messages = KafkaUtils.createDirectStream(
                    jssc, 
                    String.class, 
                    String.class,
                    StringDecoder.class, 
                    StringDecoder.class, 
                    kafkaParams, 
                    topicsSet
            );
//          @formatter:on
        processRDD(messages, app);
        return jssc;
    }

    private void processRDD(JavaPairInputDStream<String, String> messages, final String app) {
        JavaDStream<MsgStruct> rdd = messages.map(new MessageProcessFunction());

        rdd.foreachRDD(new Function<JavaRDD<MsgStruct>, Void>() {

            private static final long serialVersionUID = 250647626267731218L;

            @Override
            public Void call(JavaRDD<MsgStruct> currentRdd) throws Exception {
                if (!currentRdd.isEmpty()) {
                    logger.debug("Receive RDD. Create JobDispatcherFunction at HOST={}", FunctionUtil.getHostName());
                    currentRdd.foreachPartition(new VoidFunction<Iterator<MsgStruct>>() {

                        @Override
                        public void call(Iterator<MsgStruct> arg0) throws Exception {
                            while(arg0.hasNext()){
                                System.out.println(arg0.next().toString());
                            }
                        }
                    });
                } else {
                    logger.debug("Current RDD is empty.");
                }
                return null;
            }
        });
    }
    public static class MessageProcessFunction implements Function<Tuple2<String, String>, MsgStruct> {
        @Override
        public MsgStruct call(Tuple2<String, String> data) throws Exception {
            String message = data._2();
            System.out.println("message:"+message);
            return MsgStruct.parse(message);
        }

    }
    public static class MsgStruct implements Serializable{
        private String message;
        public static MsgStruct parse(String msg){
            MsgStruct m = new MsgStruct();
            m.message = msg;
            return m;
        }
        public String toString(){
            return "content inside="+message;
        }
    }

}

使用 DirectStream 方法,发送到 Kafka 分区的消息将到达同一个 Spark 分区是一个正确的假设。

我们不能假设每个 Spark 分区每次都会由同一个 Spark worker 处理。在每个批次间隔,为每个分区的每个 OffsetRange 创建 Spark 任务,并将其发送到集群进行处理,并登陆一些可用的 worker。

您要查找的分区位置。唯一的 partition locality that the direct kafka consumer supports 是在您的 Spark 和 Kafka 部署位于同一位置的情况下包含正在处理的偏移量范围的 kafka 主机;但这是我不常看到的部署拓扑。

如果您的要求规定需要具有主机位置,您应该查看 Apache Samza or Kafka Streams

根据 Spark Streaming + Kafka Integration Guide (Kafka broker version 0.10.0 or higher),您可以指定分区到 hosts 的显式映射。

假设您有两个主机(h1 和 h2),Kafka 主题 topic-name 有三个分区。以下关键代码将向您展示如何将指定分区映射到 Java.

中的主机
Map<TopicPartition, String> partitionMapToHost = new HashMap<>();
// partition 0 -> h1, partition 1 and 2 -> h2
partitionMapToHost.put(new TopicPartition("topic-name", 0), "h1");
partitionMapToHost.put(new TopicPartition("topic-name", 1), "h2");
partitionMapToHost.put(new TopicPartition("topic-name", 2), "h2");
List<String> topicCollection = Arrays.asList("topic-name");
Map<String, Object> kafkaParams = new HasMap<>();
kafkaParams.put("bootstrap.servers", "10.0.0.2:9092,10.0.0.3:9092");
kafkaParams.put("group.id", "group-id-name");
kafkaParams.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
kafkaParams.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
JavaInputDStream<ConsumerRecord<String, String>> records = KafkaUtils.createDirectStream(jssc,
    LocationStrategies.PreferFixed(partitionMapToHost), // PreferFixed is the key
    ConsumerStrategies.Subscribe(topicCollection, kafkaParams));

您还可以使用 LocationStrategies.PreferConsistent(),它将分区均匀分布在可用的 执行程序中 ,并确保指定的分区仅由指定的执行程序使用。