行中的天和列中的月融入时间序列 R

days in rows and months in columns melt into time series R

我有以下结构的时间序列数据:

dat=data.frame("Year"=rep(2005,31),
               "Day"=seq(1:31),
               "JANUARY"=sample(seq(1:100),31,T),
               "FEBRUARY"=c(sample(seq(1:100),28),NA,NA,NA),
               "MARCH"=sample(seq(1:100),31),
               "APRIL"=c(sample(seq(1:100),30),NA),
               "MAY"=sample(seq(1:100),31),
               "JUNE"=c(sample(seq(1:100),30),NA),
               "JULY"=sample(seq(1:100),31),
               "AUGUST"=sample(seq(1:100),31),
               "SEPTEMBER"=c(sample(seq(1:100),30),NA),
               "OCTOBER"=sample(seq(1:100),31),
               "NOVEMBER"=c(sample(seq(1:100),30),NA),
               "DECEMBER"=sample(seq(1:100),31)

我能想到的最接近的是按天和年融化数据

melt(dat,id.vars=c("Day","Year"))

强迫约会

dat$Date<-paste(dat$Day,dat$variable,dat$Year,sep="-")
dat$Date<-as.Date(dat$Date,"%d-%B-%Y")
dat<-dat[which(is.na(pm25$Date)!=T),]

有没有更有效和不愚蠢的方法来做这些?

我采用了 Hadley 方法,使用来自 tidyr 的 gather,来自 dplyr 的 mutatestr_c 来自 stringr,as_date 来自 lubridate。它使事情进展顺利。

library('dplyr')
library('tidyr')
library('stringr')
library('lubridate')

Dates <- dat %>% 
  gather(Month, Value, JANUARY:DECEMBER) %>% 
  mutate(Date_1 = str_c(Day, Month, Year, sep = "-"),
         Date_2 = as_date(Date_1, "%d-%B-%Y")) %>% 
  filter(!is.na(Date_2))