计算物理学,FFT分析
Computational Physics, FFT analysis
我解决了以下计算作业的问题,我的成绩非常差 (67%) 我想了解如何正确地做这些问题,特别是 Q1.b 和 Q3。请尽可能详细,我真的很想了解我的问题
生成数据(正弦函数)。使用fft分析:
a) 具有恒定但不同频率的三个波的叠加
b) 频率随时间变化的波
使用适当的轴绘制图表、样本频率、振幅和功率谱。
使用练习 1a) 中的 3 个波,但将它们更改为具有相同的频率、相位和振幅。用连续增加的量污染它们中的每一个
随机的、高斯分布的噪声。
1) 对三个噪声污染波的叠加执行 FFT。
分析并绘制输出。
2) 用高斯函数过滤信号,绘制“干净”的波形,并分析
结果。产生的波浪是否 100% 干净?解释一下。
#1(b)
tmin = -2*pi
tmax - 2*pi
delta = 0.01
t = arange(tmin, tmax, delta)
y = sin(2.5*t*t)
plot(t, y, '-')
title('Figure 2: Plotting a wave whose frequency depends on time ')
xlabel('Time (s)')
ylabel('Y(t)')
show()
#b.2
Fs = 150.0; # sampling rate
Ts = 1.0/Fs; # sampling interval
t = np.arange(0,1,Ts) # time vector
ff = 5; # frequency of the signal
y = np.sin(2*np.pi*ff*t)
n = len(y) # length of the signal
k = np.arange(n)
T = n/Fs
frq = k/T # two sides frequency range
frq = frq[range(n/2)] # one side frequency range
Y = np.fft.fft(y)/n # fft computing and normalization
Y = Y[range(n/2)]
#Time vs. Amplitude
plot(t,y)
title('Figure 2: Time vs. Amplitude')
xlabel('Time')
ylabel('Amplitude')
plt.show()
#Amplitude Spectrum
plot(frq,abs(Y),'r')
title('Figure 2a: Amplitude Spectrum')
xlabel('Freq (Hz)')
ylabel('amplitude spectrum')
plt.show()
#Power Spectrum
plot(frq,abs(Y)**2,'r')
title('Figure 2b: Power Spectrum')
xlabel('Freq (Hz)')
ylabel('power spectrum')
plt.show()
#Exercise 3:
#part 1
t = np.linspace(-0.5*pi,0.5*pi,1000)
#contaminating our waves with successively increasing white noise
y_1 = sin(15*t) + np.random.normal(0,0.2*pi,1000)
y_2 = sin(15*t) + np.random.normal(0,0.3*pi,1000)
y_3 = sin(15*t) + np.random.normal(0,0.4*pi,1000)
y = y_1 + y_2 + y_3 # superposition of three contaminated waves
#Plotting the figure
plot(t,y,'-')
title('A superposition of three waves contaminated with Gaussian Noise')
xlabel('Time (s)')
ylabel('Y(t)')
show()
delta = pi/1000.0
n = len(y) ## calculate frequency in Hz
freq = fftfreq(n, delta) # Computing the FFT
Freq = fftfreq(len(y), delta) #Using Fast Fourier Transformation to #calculate frequencies
N = len(Freq)
fr = Freq[1:len(Freq)/2.0]
A = fft(y)
XF = A[1:len(A)/2.0]/float(len(A[1:len(A)/2.0]))
# Amplitude spectrum for contaminated waves
plt.plot(fr, abs(XF))
title('Figure 3a : Amplitude spectrum with Gaussian Noise')
xlabel('frequency')
ylabel('Amplitude')
show()
# Power spectrum for contaminated waves
plt.plot(fr,abs(XF)**2)
title('Figure 3b: Power spectrum with Gaussian Noise')
xlabel('frequency(cycles/year)')
ylabel('Power')
show()
# part 2
F_v = exp(-(abs(freq)-2)**2/2*0.5**2)
spectrum = A*F_v #Applying the Gaussian Filter to clean our waves
new_y = ifft(spectrum) #Computing the inverse FFT
plot(t,new_y,'-')
title('A superposition of three waves after Noise Filtering')
xlabel('Time (s)')
ylabel('Y(t)')
show()
像下面的 code/images 这样的东西是意料之中的。我偏离了三个嘈杂波的总和的情节,以展示所有三个波和总和。请注意,在噪声波的强度谱中,您看不到太多。对于这些情况,还可以绘制频谱的对数 (np.log
),这样您可以更好地看到噪声。
在最后一个图中,我绘制了高斯滤波器和频谱(不同大小)w/o 重新缩放只是为了显示滤波器适用的位置。它实际上是一个低通滤波器(让低频通过),通过将高频噪声与接近零的数字相乘来去除高频噪声。
import numpy as np
import matplotlib.pyplot as p
%matplotlib inline
#1(b)
p.figure(figsize=(20,16))
p.subplot(431)
t = np.arange(0,10, 0.001) #units in seconds
#cleaner to show the frequency change explicitly than y = sin(2.5*t*t)
f= 1+ t*0.1 # linear up chirp, i.e. frequency goes up , frequency units in Hz (1/sec)
y = np.sin(2* np.pi* f* t)
p.plot(t, y, '-')
p.title('Figure 2: Plotting a wave whose frequency depends on time ')
p.xlabel('Time (s)')
p.ylabel('Y(t)')
#b.2
Fs = 150.0; # sampling rate
Ts = 1.0/Fs; # sampling interval
t = np.arange(0,1,Ts) # time vector
ff = 5; # frequency of the signal
y = np.sin(2*np.pi*ff*t)
n = len(y) # length of the signal
k = np.arange(n) ## ok, the FFT has as many points in frequency space, as the original in time
T = n/Fs ## correct ; T=sampling time, the total frequency range is 1/sample time
frq = k/T # two sided frequency range
frq = frq[range(n/2)] # one sided frequency range
Y = np.fft.fft(y)/n # fft computing and normalization
Y = Y[range(n/2)]
# Amplitude vs. Time
p.subplot(434)
p.plot(t,y)
p.title('y(t)') # Amplitude vs Time is commonly said, but strictly not true, the amplitude is unchanging
p.xlabel('Time')
p.ylabel('Amplitude')
#Amplitude Spectrum
p.subplot(435)
p.plot(frq,abs(Y),'r')
p.title('Figure 2a: Amplitude Spectrum')
p.xlabel('Freq (Hz)')
p.ylabel('amplitude spectrum')
#Power Spectrum
p.subplot(436)
p.plot(frq,abs(Y)**2,'r')
p.title('Figure 2b: Power Spectrum')
p.xlabel('Freq (Hz)')
p.ylabel('power spectrum')
#Exercise 3:
#part 1
t = np.linspace(-0.5*np.pi,0.5*np.pi,1000)
# #contaminating our waves with successively increasing white noise
y_1 = np.sin(15*t) + np.random.normal(0,0.1,1000) # no need to get pi involved in this amplitude
y_2 = np.sin(15*t) + np.random.normal(0,0.2,1000)
y_3 = np.sin(15*t) + np.random.normal(0,0.4,1000)
y = y_1 + y_2 + y_3 # superposition of three contaminated waves
#Plotting the figure
p.subplot(437)
p.plot(t,y_1+2,'-',lw=0.3)
p.plot(t,y_2,'-',lw=0.3)
p.plot(t,y_3-2,'-',lw=0.3)
p.plot(t,y-6 ,lw=1,color='black')
p.title('A superposition of three waves contaminated with Gaussian Noise')
p.xlabel('Time (s)')
p.ylabel('Y(t)')
delta = np.pi/1000.0
n = len(y) ## calculate frequency in Hz
# freq = np.fft(n, delta) # Computing the FFT <-- wrong, you don't calculate the FFT from a number, but from a time dep. vector/array
# Freq = np.fftfreq(len(y), delta) #Using Fast Fourier Transformation to #calculate frequencies
# N = len(Freq)
# fr = Freq[1:len(Freq)/2.0]
# A = fft(y)
# XF = A[1:len(A)/2.0]/float(len(A[1:len(A)/2.0]))
# Why not do as before?
k = np.arange(n) ## ok, the FFT has as many points in frequency space, as the original in time
T = n/Fs ## correct ; T=sampling time, the total frequency range is 1/sample time
frq = k/T # two sided frequency range
frq = frq[range(n/2)] # one sided frequency range
Y = np.fft.fft(y)/n # fft computing and normalization
Y = Y[range(n/2)]
# Amplitude spectrum for contaminated waves
p.subplot(438)
p.plot(frq, abs(Y))
p.title('Figure 3a : Amplitude spectrum with Gaussian Noise')
p.xlabel('frequency')
p.ylabel('Amplitude')
# Power spectrum for contaminated waves
p.subplot(439)
p.plot(frq,abs(Y)**2)
p.title('Figure 3b: Power spectrum with Gaussian Noise')
p.xlabel('frequency(cycles/year)')
p.ylabel('Power')
# part 2
p.subplot(4,3,11)
F_v = np.exp(-(np.abs(frq)-2)**2/2*0.5**2) ## this is a Gaussian, plot it separately to see it; play with the values
cleaned_spectrum = Y*F_v #Applying the Gaussian Filter to clean our waves ## multiplication in FreqDomain is convolution in time domain
p.plot(frq,F_v)
p.plot(frq,cleaned_spectrum)
p.subplot(4,3,10)
new_y = np.fft.ifft(cleaned_spectrum) #Computing the inverse FFT of the cleaned spectrum to see the cleaned wave
p.plot(t[range(n/2)],new_y,'-')
p.title('A superposition of three waves after Noise Filtering')
p.xlabel('Time (s)')
p.ylabel('Y(t)')
我解决了以下计算作业的问题,我的成绩非常差 (67%) 我想了解如何正确地做这些问题,特别是 Q1.b 和 Q3。请尽可能详细,我真的很想了解我的问题
生成数据(正弦函数)。使用fft分析: a) 具有恒定但不同频率的三个波的叠加 b) 频率随时间变化的波 使用适当的轴绘制图表、样本频率、振幅和功率谱。
使用练习 1a) 中的 3 个波,但将它们更改为具有相同的频率、相位和振幅。用连续增加的量污染它们中的每一个 随机的、高斯分布的噪声。 1) 对三个噪声污染波的叠加执行 FFT。 分析并绘制输出。 2) 用高斯函数过滤信号,绘制“干净”的波形,并分析 结果。产生的波浪是否 100% 干净?解释一下。
#1(b)
tmin = -2*pi
tmax - 2*pi
delta = 0.01
t = arange(tmin, tmax, delta)
y = sin(2.5*t*t)
plot(t, y, '-')
title('Figure 2: Plotting a wave whose frequency depends on time ')
xlabel('Time (s)')
ylabel('Y(t)')
show()
#b.2
Fs = 150.0; # sampling rate
Ts = 1.0/Fs; # sampling interval
t = np.arange(0,1,Ts) # time vector
ff = 5; # frequency of the signal
y = np.sin(2*np.pi*ff*t)
n = len(y) # length of the signal
k = np.arange(n)
T = n/Fs
frq = k/T # two sides frequency range
frq = frq[range(n/2)] # one side frequency range
Y = np.fft.fft(y)/n # fft computing and normalization
Y = Y[range(n/2)]
#Time vs. Amplitude
plot(t,y)
title('Figure 2: Time vs. Amplitude')
xlabel('Time')
ylabel('Amplitude')
plt.show()
#Amplitude Spectrum
plot(frq,abs(Y),'r')
title('Figure 2a: Amplitude Spectrum')
xlabel('Freq (Hz)')
ylabel('amplitude spectrum')
plt.show()
#Power Spectrum
plot(frq,abs(Y)**2,'r')
title('Figure 2b: Power Spectrum')
xlabel('Freq (Hz)')
ylabel('power spectrum')
plt.show()
#Exercise 3:
#part 1
t = np.linspace(-0.5*pi,0.5*pi,1000)
#contaminating our waves with successively increasing white noise
y_1 = sin(15*t) + np.random.normal(0,0.2*pi,1000)
y_2 = sin(15*t) + np.random.normal(0,0.3*pi,1000)
y_3 = sin(15*t) + np.random.normal(0,0.4*pi,1000)
y = y_1 + y_2 + y_3 # superposition of three contaminated waves
#Plotting the figure
plot(t,y,'-')
title('A superposition of three waves contaminated with Gaussian Noise')
xlabel('Time (s)')
ylabel('Y(t)')
show()
delta = pi/1000.0
n = len(y) ## calculate frequency in Hz
freq = fftfreq(n, delta) # Computing the FFT
Freq = fftfreq(len(y), delta) #Using Fast Fourier Transformation to #calculate frequencies
N = len(Freq)
fr = Freq[1:len(Freq)/2.0]
A = fft(y)
XF = A[1:len(A)/2.0]/float(len(A[1:len(A)/2.0]))
# Amplitude spectrum for contaminated waves
plt.plot(fr, abs(XF))
title('Figure 3a : Amplitude spectrum with Gaussian Noise')
xlabel('frequency')
ylabel('Amplitude')
show()
# Power spectrum for contaminated waves
plt.plot(fr,abs(XF)**2)
title('Figure 3b: Power spectrum with Gaussian Noise')
xlabel('frequency(cycles/year)')
ylabel('Power')
show()
# part 2
F_v = exp(-(abs(freq)-2)**2/2*0.5**2)
spectrum = A*F_v #Applying the Gaussian Filter to clean our waves
new_y = ifft(spectrum) #Computing the inverse FFT
plot(t,new_y,'-')
title('A superposition of three waves after Noise Filtering')
xlabel('Time (s)')
ylabel('Y(t)')
show()
像下面的 code/images 这样的东西是意料之中的。我偏离了三个嘈杂波的总和的情节,以展示所有三个波和总和。请注意,在噪声波的强度谱中,您看不到太多。对于这些情况,还可以绘制频谱的对数 (np.log
),这样您可以更好地看到噪声。
在最后一个图中,我绘制了高斯滤波器和频谱(不同大小)w/o 重新缩放只是为了显示滤波器适用的位置。它实际上是一个低通滤波器(让低频通过),通过将高频噪声与接近零的数字相乘来去除高频噪声。
import numpy as np
import matplotlib.pyplot as p
%matplotlib inline
#1(b)
p.figure(figsize=(20,16))
p.subplot(431)
t = np.arange(0,10, 0.001) #units in seconds
#cleaner to show the frequency change explicitly than y = sin(2.5*t*t)
f= 1+ t*0.1 # linear up chirp, i.e. frequency goes up , frequency units in Hz (1/sec)
y = np.sin(2* np.pi* f* t)
p.plot(t, y, '-')
p.title('Figure 2: Plotting a wave whose frequency depends on time ')
p.xlabel('Time (s)')
p.ylabel('Y(t)')
#b.2
Fs = 150.0; # sampling rate
Ts = 1.0/Fs; # sampling interval
t = np.arange(0,1,Ts) # time vector
ff = 5; # frequency of the signal
y = np.sin(2*np.pi*ff*t)
n = len(y) # length of the signal
k = np.arange(n) ## ok, the FFT has as many points in frequency space, as the original in time
T = n/Fs ## correct ; T=sampling time, the total frequency range is 1/sample time
frq = k/T # two sided frequency range
frq = frq[range(n/2)] # one sided frequency range
Y = np.fft.fft(y)/n # fft computing and normalization
Y = Y[range(n/2)]
# Amplitude vs. Time
p.subplot(434)
p.plot(t,y)
p.title('y(t)') # Amplitude vs Time is commonly said, but strictly not true, the amplitude is unchanging
p.xlabel('Time')
p.ylabel('Amplitude')
#Amplitude Spectrum
p.subplot(435)
p.plot(frq,abs(Y),'r')
p.title('Figure 2a: Amplitude Spectrum')
p.xlabel('Freq (Hz)')
p.ylabel('amplitude spectrum')
#Power Spectrum
p.subplot(436)
p.plot(frq,abs(Y)**2,'r')
p.title('Figure 2b: Power Spectrum')
p.xlabel('Freq (Hz)')
p.ylabel('power spectrum')
#Exercise 3:
#part 1
t = np.linspace(-0.5*np.pi,0.5*np.pi,1000)
# #contaminating our waves with successively increasing white noise
y_1 = np.sin(15*t) + np.random.normal(0,0.1,1000) # no need to get pi involved in this amplitude
y_2 = np.sin(15*t) + np.random.normal(0,0.2,1000)
y_3 = np.sin(15*t) + np.random.normal(0,0.4,1000)
y = y_1 + y_2 + y_3 # superposition of three contaminated waves
#Plotting the figure
p.subplot(437)
p.plot(t,y_1+2,'-',lw=0.3)
p.plot(t,y_2,'-',lw=0.3)
p.plot(t,y_3-2,'-',lw=0.3)
p.plot(t,y-6 ,lw=1,color='black')
p.title('A superposition of three waves contaminated with Gaussian Noise')
p.xlabel('Time (s)')
p.ylabel('Y(t)')
delta = np.pi/1000.0
n = len(y) ## calculate frequency in Hz
# freq = np.fft(n, delta) # Computing the FFT <-- wrong, you don't calculate the FFT from a number, but from a time dep. vector/array
# Freq = np.fftfreq(len(y), delta) #Using Fast Fourier Transformation to #calculate frequencies
# N = len(Freq)
# fr = Freq[1:len(Freq)/2.0]
# A = fft(y)
# XF = A[1:len(A)/2.0]/float(len(A[1:len(A)/2.0]))
# Why not do as before?
k = np.arange(n) ## ok, the FFT has as many points in frequency space, as the original in time
T = n/Fs ## correct ; T=sampling time, the total frequency range is 1/sample time
frq = k/T # two sided frequency range
frq = frq[range(n/2)] # one sided frequency range
Y = np.fft.fft(y)/n # fft computing and normalization
Y = Y[range(n/2)]
# Amplitude spectrum for contaminated waves
p.subplot(438)
p.plot(frq, abs(Y))
p.title('Figure 3a : Amplitude spectrum with Gaussian Noise')
p.xlabel('frequency')
p.ylabel('Amplitude')
# Power spectrum for contaminated waves
p.subplot(439)
p.plot(frq,abs(Y)**2)
p.title('Figure 3b: Power spectrum with Gaussian Noise')
p.xlabel('frequency(cycles/year)')
p.ylabel('Power')
# part 2
p.subplot(4,3,11)
F_v = np.exp(-(np.abs(frq)-2)**2/2*0.5**2) ## this is a Gaussian, plot it separately to see it; play with the values
cleaned_spectrum = Y*F_v #Applying the Gaussian Filter to clean our waves ## multiplication in FreqDomain is convolution in time domain
p.plot(frq,F_v)
p.plot(frq,cleaned_spectrum)
p.subplot(4,3,10)
new_y = np.fft.ifft(cleaned_spectrum) #Computing the inverse FFT of the cleaned spectrum to see the cleaned wave
p.plot(t[range(n/2)],new_y,'-')
p.title('A superposition of three waves after Noise Filtering')
p.xlabel('Time (s)')
p.ylabel('Y(t)')