使用 Cartopy 从数据中屏蔽海洋或陆地

Mask Ocean or Land from data using Cartopy

我想从全球海表温度数据中屏蔽陆地区域。我正在使用 Cartopy 绘制数据。

import numpy as np
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
from netCDF4 import Dataset

f = Dataset('sst.mnmean.nc')
sst = f.variables['sst'][0,:,:]
lats = f.variables['lat'][:]
lons = f.variables['lon'][:]

ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines()
plot = ax.contourf(lons, lats, sst, 60, transform=ccrs.PlateCarree())
cb = plt.colorbar(plot)
plt.show()

上面的代码绘制了这样的数据:

我想屏蔽这片土地。

为了掩蔽土地面积,使用底图会更容易。

from mpl_toolkits.basemap import Basemap
map = Basemap(projection='mill',lon_0=180) # create projection
....                                       # whatever processing needed
map.fillcontinents(color='coral')          # mask land mass

See basemap example here

我浏览了 cartopy 文档并发现了名为 add_feature 的方法。代码如下:

import numpy as np
import matplotlib.pyplot as plt
import cartopy as cart
from mpl_toolkits.basemap import Basemap
from netCDF4 import Dataset

f = Dataset('sst.mnmean.nc')
sst = f.variables['sst'][0,:,:]
lats = f.variables['lat'][:]
lons = f.variables['lon'][:]

ax = plt.axes(projection=cart.crs.PlateCarree())
ax.coastlines()
ax.add_feature(cart.feature.LAND, zorder=100, edgecolor='k')
ax.set_global()
plot = ax.contourf(lons, lats, sst, 60, transform=cart.crs.PlateCarree())
cb = plt.colorbar(plot)
plt.show()

情节现在看起来像 this。 要掩盖海洋,请将 cart.feature.LAND 更改为 cart.feature.OCEAN