Tensorflow 获取范围内的所有变量

Tensorflow get all variables in scope

我在特定范围内创建了一些变量,如下所示:

with tf.variable_scope("my_scope"):
  createSomeVariables()
  ...

然后我想获取 "my_scope" 中所有变量的列表,以便将其传递给优化器。正确的做法是什么?

我想你想要 tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='my_scope')。这将获取范围内的所有变量。

要传递给优化器,您不需要 所有 变量,您只需要可训练变量。这些也保存在默认集合中,即 tf.GraphKeys.TRAINABLE_VARIABLES.

用户正确指出您需要tf.get_collection()。我将举一个简单的例子来说明如何做到这一点:

import tensorflow as tf

with tf.name_scope('some_scope1'):
    a = tf.Variable(1, 'a')
    b = tf.Variable(2, 'b')
    c = tf.Variable(3, 'c')

with tf.name_scope('some_scope2'):
    d = tf.Variable(4, 'd')
    e = tf.Variable(5, 'e')
    f = tf.Variable(6, 'f')

h = tf.Variable(8, 'h')

for i in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='some_scope'):
    print i   # i.name if you want just a name

请注意,您可以提供任何 graphKeys 并且范围是正则表达式:

scope: (Optional.) If supplied, the resulting list is filtered to include only items whose name attribute matches using re.match. Items without a name attribute are never returned if a scope is supplied and the choice or re.match means that a scope without special tokens filters by prefix.

因此,如果您通过 'some_scope',您将获得 6 个变量。