以斜条纹打印矩阵的元素
Print elements of a matrix in diagonal stripes
我想生成一个从1开始连续数字的矩阵,这种形式
zig zag matrix
public static int[][] Zig_Zag(final int size) {
int[][] data = new int[size][size];
int i = 1;
int j = 1;
for (int element = 0; element < size * size; element++) {
data[i - 1][j - 1] = element;
if ((i + j) % 2 == 0) { // Even stripes if (j < size) j++; else i+=
// 2; if (i > 1) i--; } else { // Odd
// stripes if (i < size) i++; else j+= 2; if
// (j > 1) j--; } } return data; }
}
}
return data;
}
有人可以帮忙吗?
试试这个代码:
public static int[][] Zig_Zag(final int size) {
int[][] data = new int[size][size];
int i = 1;
int j = 1;
for (int element = 1; element <= size * size; element++) {
data[i - 1][j - 1] = element;
if ((i + j) % 2 == 0) {
// Even stripes
if (j < size)
j++;
else
i += 2;
if (i > 1)
i--;
} else {
// Odd stripes
if (i < size)
i++;
else
j += 2;
if (j > 1)
j--;
}
}
return data;
}
public static void main(String[] args) {
int[][] data = Zig_Zag(4);
for(int i=0; i<data.length;i++){
for(int j=0; j<data[i].length;j++){
System.out.print(data[i][j]+" ");
}
System.out.println("");
}
}
输出:
1 2 6 7
3 5 8 13
4 9 12 14
10 11 15 16
试试这个
public static int[][] Zig_Zag(int size) {
int[][] a = new int[size][size];
int n = 1;
for (int r = size, c = 0; r >= 0; --r)
for (int i = r, j = c; i < size; ++i, ++j)
a[i][j] = n++;
for (int r = 0, c = 1; c < size; ++c)
for (int i = r, j = c; j < size; ++i, ++j)
a[i][j] = n++;
return a;
}
和
int[][] a = Zig_Zag(4);
for (int[] r : a)
System.out.println(Arrays.toString(r));
结果:
[7, 11, 14, 16]
[4, 8, 12, 15]
[2, 5, 9, 13]
[1, 3, 6, 10]
不是一个非常优雅的解决方案:
private static int triangle_below(int n) {
return n * (n + 1) / 2;
}
private static int except_triangle_above(int size, int n) {
return size * size - triangle_below(2 * size - n);
}
private static int[][] gen(int size) {
int[][] m = new int[size][size];
for (int i = 0; i < size; ++i) {
for (int j = 0; j < size; ++j) {
// already filled cells in lower diagonal layers
int k = Math.min(
triangle_below(i + j),
except_triangle_above(size, Math.max(size, i + j + 1))
);
// position in current layer
int l = Math.min(j + 1, size - i);
m[size - i - 1][j] = k + l;
}
}
return m;
}
我想生成一个从1开始连续数字的矩阵,这种形式 zig zag matrix
public static int[][] Zig_Zag(final int size) {
int[][] data = new int[size][size];
int i = 1;
int j = 1;
for (int element = 0; element < size * size; element++) {
data[i - 1][j - 1] = element;
if ((i + j) % 2 == 0) { // Even stripes if (j < size) j++; else i+=
// 2; if (i > 1) i--; } else { // Odd
// stripes if (i < size) i++; else j+= 2; if
// (j > 1) j--; } } return data; }
}
}
return data;
}
有人可以帮忙吗?
试试这个代码:
public static int[][] Zig_Zag(final int size) {
int[][] data = new int[size][size];
int i = 1;
int j = 1;
for (int element = 1; element <= size * size; element++) {
data[i - 1][j - 1] = element;
if ((i + j) % 2 == 0) {
// Even stripes
if (j < size)
j++;
else
i += 2;
if (i > 1)
i--;
} else {
// Odd stripes
if (i < size)
i++;
else
j += 2;
if (j > 1)
j--;
}
}
return data;
}
public static void main(String[] args) {
int[][] data = Zig_Zag(4);
for(int i=0; i<data.length;i++){
for(int j=0; j<data[i].length;j++){
System.out.print(data[i][j]+" ");
}
System.out.println("");
}
}
输出:
1 2 6 7 3 5 8 13 4 9 12 14 10 11 15 16
试试这个
public static int[][] Zig_Zag(int size) {
int[][] a = new int[size][size];
int n = 1;
for (int r = size, c = 0; r >= 0; --r)
for (int i = r, j = c; i < size; ++i, ++j)
a[i][j] = n++;
for (int r = 0, c = 1; c < size; ++c)
for (int i = r, j = c; j < size; ++i, ++j)
a[i][j] = n++;
return a;
}
和
int[][] a = Zig_Zag(4);
for (int[] r : a)
System.out.println(Arrays.toString(r));
结果:
[7, 11, 14, 16]
[4, 8, 12, 15]
[2, 5, 9, 13]
[1, 3, 6, 10]
不是一个非常优雅的解决方案:
private static int triangle_below(int n) {
return n * (n + 1) / 2;
}
private static int except_triangle_above(int size, int n) {
return size * size - triangle_below(2 * size - n);
}
private static int[][] gen(int size) {
int[][] m = new int[size][size];
for (int i = 0; i < size; ++i) {
for (int j = 0; j < size; ++j) {
// already filled cells in lower diagonal layers
int k = Math.min(
triangle_below(i + j),
except_triangle_above(size, Math.max(size, i + j + 1))
);
// position in current layer
int l = Math.min(j + 1, size - i);
m[size - i - 1][j] = k + l;
}
}
return m;
}