按名称分类的累计投资组合表现

Cumulative Portfolio performance by Name

这就是我的 data.frame 的样子。最右边的列(性能)是我想要的列。

library(data.table)
    dt <- fread('
    Name      FundName     SharePrice   TotalShares   PurchaseDate   Performance
    John       A               10           500          2016-01-01       0%   
    John       A               20           1000         2016-02-01       20%     
    John       A               10           1500         2016-03-01      -25%%          
    John       B               30           500          2016-04-01      -18.18%       
    John       B               60           1000         2016-05-01       4.16%       
    Tom        A               10           500          2016-01-01       0%   
    Tom        A               20           1000         2016-02-01       20%     
    Tom        A               10           1500         2016-03-01      -25%%          
    Tom        B               30           500          2016-04-01      -18.18%       
    Tom        B               60           1000         2016-05-01       4.16%                    
      ')

我希望这是有道理的。在尝试计算累积业绩时,我很难跟踪这两种基金的价格。感谢您的帮助。

我会扩展数据以涵盖每个人的所有 Date-Fund 组合:

dt_skel = dt[, do.call(CJ, c(.SD, unique=TRUE)), 
  by=Name, .SDcols=c("FundName", "PurchaseDate")]

dt_full = dt[dt_skel, on=names(dt_skel)]
dt_full[ is.na(TotalShares), TotalShares := 0L]
dt_full[ , SharePrice := SharePrice[1L], by=.(Name, FundName, cumsum(!is.na(SharePrice)))]

然后汇总

res = dt_full[!is.na(SharePrice), .(
  PurchaseDate,
  spent = cumsum(TotalShares*SharePrice),
  value = cumsum(TotalShares)*SharePrice
), by=.(Name, FundName)][, .(
  value = sum(value),
  spent = sum(spent)
), by=.(Name, PurchaseDate)]


    Name PurchaseDate  value  spent
 1: John   2016-01-01   5000   5000
 2: John   2016-02-01  30000  25000
 3: John   2016-03-01  30000  40000
 4: John   2016-04-01  45000  55000
 5: John   2016-05-01 120000 115000
 6:  Tom   2016-01-01   5000   5000
 7:  Tom   2016-02-01  30000  25000
 8:  Tom   2016-03-01  30000  40000
 9:  Tom   2016-04-01  45000  55000
10:  Tom   2016-05-01 120000 115000

将性能指标添加到原始交易 table:

dt[res, ret := value/spent - 1, on=c("Name, PurchaseDate")]

假设日期总是每月一次,您可以使用

使 dt_skel 更小
dt_skel = dt[, MaxDate := max(PurchaseDate), by=Name][, 
  seq(from = PurchaseDate[1L], to =MaxDate[1L], by="month"), by=.(Name, FundName)]

当然,日期格式应为 DateIDate 才能正常工作。