如何有效地计算 python 列表列表中的同时出现

How to efficiently tally co-occurrences in python list of lists

我有一个相对较大的(~3GB,3+ 百万个条目)子列表列表,其中每个子列表包含一组标签。这是一个非常简单的例子:

tag_corpus = [['cat', 'fish'], ['cat'], ['fish', 'dog', 'cat']]  

unique_tags = ['dog', 'cat', 'fish'] 
co_occurences = {key:Counter() for key in unique_tags}

for tags in tag_corpus: 
    tallies = Counter(tags)
    for key in tags: 
        co_occurences[key] = co_occurences[key] + tallies

这有点像魅力,但它在实际数据集上超级慢,它有非常大的子列表(总共约 30K 个唯一标签)。任何 python 专业人士都知道如何加快这件事吗?

可能走得更快。你得量一下。

from collections import Counter
from collections import defaultdict

tag_corpus = [['cat', 'fish'], ['cat'], ['fish', 'dog', 'cat']]

co_occurences = defaultdict(Counter)
for tags in tag_corpus:
    for key in tags:
        co_occurences[key].update(tags)
unique_tags = sorted(co_occurences)

print co_occurences
print unique_tags

我只是在胡闹,没想到最终会得到更高效的东西,但是有 100000 只猫、狗和鱼,这要快得多,计时为 0.07 秒,而不是 1.25。

我试图以一个更短的解决方案结束,但事实证明这种方式是最快的,即使它看起来非常简单:)

occurances = {}
for tags in tag_corpus:
    for key in tags:
        for key2 in tags:
            try:
                occurances[key][key2] += 1
            except KeyError:
                try:
                    occurances[key][key2] = 1
                except KeyError:
                    occurances[key] = {key2: 1}

您可以尝试结合使用 defaultdict 来避免在开始时使用 Peters 答案中的逻辑进行初始化,运行时间会明显加快:

In [35]: %%timeit
co_occurences = defaultdict(Counter)
for tags in tag_corpus:
    for key in tags:
        co_occurences[key].update(tags)
   ....: 

1 loop, best of 3: 513 ms per loop

In [36]: %%timeit
occurances = {k1: defaultdict(int) for k1 in unique_tags}
for tags in tag_corpus:
    for key in tags:
        for key2 in tags:
            occurances[key][key2] += 1
   ....: 
10 loops, best of 3: 65.7 ms per loop

In [37]: %%timeit
   ....: co_occurences = {key:Counter() for key in unique_tags}
   ....: for tags in tag_corpus: 
   ....:     tallies = Counter(tags)
   ....:     for key in tags: 
   ....:         co_occurences[key] = co_occurences[key] + tallies
   ....: 
 1 loop, best of 3: 1.13 s per loop
    In [38]: %%timeit
   ....: occurances = defaultdict(lambda: defaultdict(int))
   ....: for tags in tag_corpus:
   ....:     for key in tags:
   ....:         for key2 in tags:
   ....:             occurances[key][key2] += 1
   ....: 
10 loops, best of 3: 66.5 ms per loop

至少在 python2 中,Counter 字典实际上并不是获得计数的最快方法,defaultdict 但是即使使用 lambda 也很快。

即使滚动您自己的计数函数也会更快:

def count(x):
    d = defaultdict(int)
    for ele in x:
        d[ele] += 1
    return d 

不如最快的快,但仍然不错:

In [42]: %%timeit
   ....: co_occurences = {key: defaultdict(int) for key in unique_tags}
   ....: for tags in tag_corpus:
   ....:     tallies = count(tags)
   ....:     for key in tags:
   ....:         for k, v in tallies.items():
   ....:             co_occurences[key][k] += v
   ....: 

10 loops, best of 3: 164 ms per loop

如果您想要更快的速度,一点 cython 可能会大有帮助。