此折叠实现中的错误

Mistake in this fold implementation

this lecture关于Haskell的编程中,有一个fold实现,定义如下:

fold :: (a -> b -> b) -> b  -> [a] -> b
fold f z []     = z
fold f z (x:xs) = f x (fold z f xs)

想法是用它来定义总和、乘积等...

sum''     = fold (+) 0
product'' = fold (*) 1
length''  = fold addOne 0
 where addOne _ s = 1 + s

在递归模式中zf之间似乎有一个反转:否则,z f xs如何匹配(a -> b -> b) -> b -> [a]

在我看来,递归模式应该是

fold f z (x:xs) = f x (fold f z xs)

然而,在讲座后不久,您可以找到以下语句:

fold f z [a,b,c] = a `f` (b `f` (c `f` z))

这强化了所谓的错误,所以我想一定是我的脑袋出了问题!

不应该更像下面这样吗?

fold f z [a,b,c] = `f` a (`f` b (`f` c z))

我是不是漏掉了一点,还是在讲课中犯了双重错误?

代码fold f z (x:xs) = f x (fold z f xs)确实应该是fold f z (x:xs) = f x (fold f z xs)

虽然第二部分是正确的,因为(注意反引号)

f x y == x `f` y

我们有

a `f` (b `f` (c `f` z)) == f a (f b (f c z))) 

There seems to be an inversion between z and f inside the recursion pattern: otherwise how could z f xs match (a -> b -> b) -> b -> [a]?

你是对的,类型不一致,如果你尝试按给定的方式定义 fold,GHC 会很快通知你:

Couldn't match expected type ‘a -> b -> b’ with actual type ‘b’
  ‘b’ is a rigid type variable bound by
      the type signature for fold :: (a -> b -> b) -> b -> [a] -> b
      at test.hs:1:9
...

However, shortly after in the lecture, you can find the following statement:

fold f z [a,b,c] = a `f` (b `f` (c `f` z))

This reinforces the so-called mistake, so I guess there must be a mistake in my head instead!

Shouldn't it be more like the following ?

fold f z [a,b,c] = `f` a (`f` b (`f` c z))

没有。一旦你正确地定义了 fold,这个定义的展开就是正确的。作者只是简单地使用反引号将函数 f 用作中缀运算符:

fold f z [a,b,c] = a `f` (b `f` (c `f` z))

相当于

fold f z [a,b,c] = f a (f b (f c z))

但如果您将 f 视为二元函数(例如 (+)),则可能更具可读性;比较

fold (+) 0 [1,2,3] = 1 + (2 + (3 + 0))

可读性较差

fold (+) 0 [1,2,3] = (+) 1 ((+) 2 ((+) 3 0))