为大型数据集构建地图

Building a map for large datasets

我有一个非常大的文件,它有两列,大小约为 10GB:

A  B
1  2
3  7
1  5
6  5
9  8

基本上,我想从这个文件创建一个类似地图的结构,如下所示:

{{1 -> 2,5},{3->7}, {6->5}, {9->8}}

目标是编写一个函数来计算受删除键影响的唯一值的百分比。例如,在上面的示例中,如果我删除键,则 1, 2/4 的值会受到影响。如果我同时删除 1 和 6,则会影响 2/4 的值。问题是这个映射结构会占用太多内存。有没有更有效的替代方法?我认为您需要一张地图来跟踪重复项。您需要知道哪些键已经被删除,这样您就不会重复计算。这是我的初始代码:

with open("C:/Users/XX/Desktop/Train.tsv") as f:
    counter = 0
    for line in f:
      #split line into key and value
      #add key into set
      #if set does not contain key
         #create new key
         #add list for this key
         #append value to this list
      #else
         #append value to already existing list for that key

这是我在 运行 Alexander 的代码之后得到的错误信息:不知道 KeyError 293 是什么意思

---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
<ipython-input-22-73145e080824> in <module>()
      7     for line in f:
      8         key, value = line.split()
----> 9         if value not in dd[key]:
     10             dd[key].append(value)
     11         counter = counter+1

KeyError: '293'

您可以为此使用 defaultdict,我们将其设置为自动为每个键分配一个空列表:

from collections import defaultdict

filename = "C:/Users/XX/Desktop/Train.tsv"
dd = defaultdict(list)
with open(filename) as f:
    for line in f:
        key, value = line.split(',')  # Assuming comma delimited.
        if value not in dd[key]:  # If you only want to retain unique values.
            dd[key].append(value)

是这样的吗?

#!python3

from collections import defaultdict

AB_map = defaultdict(set)
Values = set()

with open('train.tsv') as infile:
    headers = next(infile)
    for line in infile:
        if not line.strip():
            continue
        a,b = map(int, line.split())
        AB_map[a].add(b)
        Values.add(b)

print("# of keys:", len(AB_map.keys()))
print("# of values:", len(Values))

def impact_of_deletion(keylist):
    values_impacted = set([])
    for key in keylist:
        values_impacted.update(AB_map[key])
    return values_impacted

for hyp in ((1,), (1,6)):
    print("Deleting", hyp, "would impact:", len(impact_of_deletion(hyp)))