Zeppelin 中的 AWS Redshift 驱动程序

AWS Redshift driver in Zeppelin

我想使用笔记本 Zeppelin 在 Redshift 中探索我的数据。一个带有 Spark 的小型 EMR 集群落后 运行。我正在加载数据块的 spark-redshift 库

%dep
z.reset()
z.load("com.databricks:spark-redshift_2.10:0.6.0")

然后

import org.apache.spark.sql.DataFrame

val query = "..."

val url = "..."
val port=5439
val table = "..."
val database = "..."
val user = "..."
val password = "..."

val df: DataFrame = sqlContext.read
  .format("com.databricks.spark.redshift")
  .option("url", s"jdbc:redshift://${url}:$port/$database?user=$user&password=$password")
  .option("query",query)
  .option("tempdir", "s3n://.../tmp/data")
  .load()

df.show

但我收到错误

java.lang.ClassNotFoundException: Could not load an Amazon Redshift JDBC driver; see the README for instructions on downloading and configuring the official Amazon driver

我添加了选项

option("jdbcdriver", "com.amazon.redshift.jdbc41.Driver")

但并没有变得更好。我想我需要在某个地方指定 redshift 的 JDBC 驱动程序,就像我将 --driver-class-path 传递给 spark-shell 一样,但是如何使用 zeppelin 做到这一点?

您可以使用 Zeppelin 的 dependency-loading mechanism or, in case of Spark, using %dep dynamic dependency loader

添加具有依赖关系的外部 jar,例如 JDBC 驱动程序

When your code requires external library, instead of doing download/copy/restart Zeppelin, you can easily do following jobs using %dep interpreter.

  • Load libraries recursively from Maven repository
  • Load libraries from local filesystem
  • Add additional maven repository
  • Automatically add libraries to SparkCluster (You can turn off)

后者看起来像:

%dep
// loads with all transitive dependencies from Maven repo
z.load("groupId:artifactId:version")

// or add artifact from filesystem
z.load("/path/to.jar")

并且按照惯例必须在注释的第一段中。