将数据集聚合到 "ignore" 分类变量
Aggregating Dataset to "ignore" categorical variable
我有这个结构如下的数据集
Neighborhood, var1, var2, COUNTRY, DAY, categ 1, categ 2
1 700 724 AL 0 YES YES
1 500 200 FR 0 YES NO
....
1 701 659 IT 1 NO YES
1 791 669 IT 1 NO YES
....
2 239 222 GE 0 YES NO
等等...
因此层次结构是 "Neighborhood > DAY > COUNTRY",对于每个社区,每天,每个国家,我都有 var1、var2、categ1 和 categ2 的观察
我暂时对分析国家不感兴趣,所以我想做的是汇总(通过总结 "over" 国家字段 var1 和 var2,分类变量 categ1 和 categ2 是不受国家影响),并且有一个数据集,每个社区和每一天都会给我有关 var1、var2、categ1 和 categ2
的信息
我是 R 编程的新手,基本上不知道很多包(我会用 c++ 编写程序,但我强迫自己学习 R)...
那么你知道如何做到这一点吗?
数据
df1 <- structure(list(Neighborhood = c(1L, 1L, 1L, 1L, 2L),
var1 = c(700L, 500L, 701L, 791L, 239L),
var2 = c(724L, 200L, 659L, 669L, 222L),
COUNTRY = c("AL", "FR", "IT", "IT", "GE"),
DAY = c(0L, 0L, 1L, 1L, 0L),
`categ 1` = c("YES", "YES", "NO", "NO", "YES"),
`categ 2` = c("YES", "NO", "YES", "YES", "NO")),
.Names = c("Neighborhood", "var1", "var2", "COUNTRY", "DAY", "categ 1", "categ 2"),
class = "data.frame", row.names = c(NA, -5L))
编辑:@akrun
当我尝试你的命令时,结果是:
聚合(.~邻居+天+国家,数据= df1[!grepl("^categ", names(df1))], mean)
Neighborhood, DAY, COUNTRY, var1, var2
1 1 0 AL 700 724
2 1 0 FR 500 200
3 2 0 GE 239 222
4 1 1 IT 746 664
但是(在这个例子中)我想要的是:
Neighborhood, DAY, var1, var2
1 1 0 1200 924 //wher var1=700+500....
2 1 1 1492 1328
3 2 0 239 222
如果我们对 'categ' 列不感兴趣,我们可以 grep
将它们取出并使用 aggregate
aggregate(.~Neighborhood+DAY, data= df1[!grepl("^(categ|COUNTRY)", names(df1))], sum)
# Neighborhood DAY var1 var2
#1 1 0 1200 924
#2 2 0 239 222
#3 1 1 1492 1328
或使用dplyr
library(dplyr)
df1 %>%
group_by(Neighborhood, DAY) %>%
summarise_each(funs(sum), matches("^var"))
# Neighborhood DAY var1 var2
# (int) (int) (int) (int)
#1 1 0 1200 924
#2 1 1 1492 1328
#3 2 0 239 222
我有这个结构如下的数据集
Neighborhood, var1, var2, COUNTRY, DAY, categ 1, categ 2
1 700 724 AL 0 YES YES
1 500 200 FR 0 YES NO
....
1 701 659 IT 1 NO YES
1 791 669 IT 1 NO YES
....
2 239 222 GE 0 YES NO
等等...
因此层次结构是 "Neighborhood > DAY > COUNTRY",对于每个社区,每天,每个国家,我都有 var1、var2、categ1 和 categ2 的观察
我暂时对分析国家不感兴趣,所以我想做的是汇总(通过总结 "over" 国家字段 var1 和 var2,分类变量 categ1 和 categ2 是不受国家影响),并且有一个数据集,每个社区和每一天都会给我有关 var1、var2、categ1 和 categ2
的信息我是 R 编程的新手,基本上不知道很多包(我会用 c++ 编写程序,但我强迫自己学习 R)... 那么你知道如何做到这一点吗?
数据
df1 <- structure(list(Neighborhood = c(1L, 1L, 1L, 1L, 2L),
var1 = c(700L, 500L, 701L, 791L, 239L),
var2 = c(724L, 200L, 659L, 669L, 222L),
COUNTRY = c("AL", "FR", "IT", "IT", "GE"),
DAY = c(0L, 0L, 1L, 1L, 0L),
`categ 1` = c("YES", "YES", "NO", "NO", "YES"),
`categ 2` = c("YES", "NO", "YES", "YES", "NO")),
.Names = c("Neighborhood", "var1", "var2", "COUNTRY", "DAY", "categ 1", "categ 2"),
class = "data.frame", row.names = c(NA, -5L))
编辑:@akrun
当我尝试你的命令时,结果是:
聚合(.~邻居+天+国家,数据= df1[!grepl("^categ", names(df1))], mean)
Neighborhood, DAY, COUNTRY, var1, var2
1 1 0 AL 700 724
2 1 0 FR 500 200
3 2 0 GE 239 222
4 1 1 IT 746 664
但是(在这个例子中)我想要的是:
Neighborhood, DAY, var1, var2
1 1 0 1200 924 //wher var1=700+500....
2 1 1 1492 1328
3 2 0 239 222
如果我们对 'categ' 列不感兴趣,我们可以 grep
将它们取出并使用 aggregate
aggregate(.~Neighborhood+DAY, data= df1[!grepl("^(categ|COUNTRY)", names(df1))], sum)
# Neighborhood DAY var1 var2
#1 1 0 1200 924
#2 2 0 239 222
#3 1 1 1492 1328
或使用dplyr
library(dplyr)
df1 %>%
group_by(Neighborhood, DAY) %>%
summarise_each(funs(sum), matches("^var"))
# Neighborhood DAY var1 var2
# (int) (int) (int) (int)
#1 1 0 1200 924
#2 1 1 1492 1328
#3 2 0 239 222