不可散列类型:'Vertex'

unhashable type: 'Vertex'

我收到以下错误:

Traceback (most recent call last):
File "dijkastras.py", line 146, in <module>
  g.add_edge(vertices[i], k[0], int(k[1]))
File "dijkastras.py", line 82, in add_edge
  self.vertices[frm].add_neighbour(self.vertices[to], weight)
File "dijkastras.py", line 16, in add_neighbour
  self.adjacent[neighbour] = weight
TypeError: unhashable type: 'Vertex'

我知道定义 __eq__ 意味着默认哈希函数消失,我必须重新定义 __hash__ 方法,但我不知道该怎么做。有人可以建议哈希函数的实现吗? 提前致谢。


这是我的代码。

import sys
import heapq
from functools import total_ordering

@total_ordering
class Vertex:
    def __init__(self, node):
        self.id = node
        self.adjacent = {}
        # Set the distances to infinity for all nodes
        self.distance = sys.maxsize
        self.visited = False
        self.previous = None

    def add_neighbour(self, neighbour, weight=0):
        self.adjacent[neighbour] = weight

    def get_connections(self):
        return self.adjacent.keys()

    def get_id(self):
        return self.id

    def get_weight(self, neighbour):
        return self.adjacent[neighbour]

    def set_distance(self, dist):
        self.distance = dist

    def get_distance(self):
        return self.distance

    def set_previous(self, prev):
        self.previous = prev

    def set_visited(self):
        self.visited = True

    def __str__(self):
        return str(self.id) + ' adjacent: '
        + str([x.id for x in self.adjacent])

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.distance == other.distance
        return NotImplemented

    def __lt__(self, other):
        if isinstance(other, self.__class__):
            return self.distance < other.distance
        return NotImplemented


class Graph:
    def __init__(self):
        self.vertices = {}
        self.num_vertices = 0

    def __iter__(self):
        return iter(self.vertices.values())

    def add_vertex(self, node):
        self.num_vertices += 1
        new_vertex = Vertex(node)
        self.vertices[node] = new_vertex
        return new_vertex

    def get_vertex(self, n):
        if n in self.vertices:
            return self.vertices[n]
        return None

    def get_vertices(self):
        return self.vertices.keys()

    def add_edge(self, frm, to, weight=0):
        if frm not in self.vertices:
            self.add_vertex(frm)
        if to not in self.vertices:
            self.add_vertex(to)

        self.vertices[frm].add_neighbour(self.vertices[to], weight)
        self.vertices[to].add_neighbour(self.vertices[frm], weight)

    def set_previous(self, current):
        self.previous = current

    def get_previous(self, current):
        return self.previous


def shortest(vertex, path):
    ''' Find the shortest path from vertex.previous'''
    if vertex.previous:
        path.append(vertex.previous.get_id())
        shortest(vertex.previous, path)
    return


def dijkstra(aGraph, start, target):
    start.set_distance(0)
    univisted = [(v.get_distance(), v) for v in aGraph]
    print(univisted)
    heapq.heapify(univisted)
    while len(univisted):
        uv = heapq.heappop(univisted)
        current = uv[1]
        current.set_visited()

        for next in current.adjacent:
            if next.visited:
                continue
            new_dist = current.get_distance() + current.get_weight(next)

            if new_dist < next.get_distance():
                next.set_distance(new_dist)
                next.set_previous(current)
                print('updated : current = %s next = %s new_dist = %s'
                      % (current.get_id(), next.get_id(), next.get_distance()))
            else:
                print('not updated : current = %s next = %s new_dist =  %s'
                      % (current.get_id(), next.get_id(), next.get_distance()))

        while len(univisted):
            heapq.heappop(univisted)
        univisted = [(v.get_distance(), v) for v in aGraph if not v.visited]
        heapq.heapify(univisted)

if __name__ == '__main__':
    g = Graph()
    text = open('Graph.txt').read().split('\n')
    vertices = text[0].split()
    for i in vertices:
        g.add_vertex(i)
    vert_all = []
    for i in range(1, 11):
        vert_all.append(list(zip(vertices, text[i].split()[1:])))
    filtered_vert_all = []
    for i in vert_all:
        filtered = [x for x in i if x[1] is not '0']
        filtered_vert_all.append(filtered)
    # print(filtered_vert_all)
    for i, j in enumerate(filtered_vert_all):
        for k in j:
            print(vertices[i], k[0], int(k[1]))
            g.add_edge(vertices[i], k[0], int(k[1]))
    for v in g:
        for w in v.get_connections():
            vid = v.get_id()
            wid = w.get_id()
            print('( {} , {}, {:d})'.format(vid, wid, v.get_weight(w)))
    dijkstra(g, g.get_vertex('E'), g.get_vertex('J'))
    target = g.get_vertex('E')
    path = [target.get_id()]
    shortest(target, path)
    print('The shortest path is: {}'.format(path[::-1]))

也许可以尝试添加到 Vertex class:

def __hash__(self):
    return hash(str(self.id))

(您也可以选择不同属性的组合,不仅是 id;您选择的属性本身应该是可哈希的)。

基于Pythondocumentation的这一部分:

It is advised to mix together the hash values of the components of the object that also play a part in comparison of objects by packing them into a tuple and hashing the tuple.

这是一个例子:

class Vertex:
  def __init__(self, prop1, prop2):
    self.prop1 = prop1
    self.prop2 = prop2


def __hash__(self):
    return hash((self.prop1, self.prop2))