r:NbClust() 仅计算 30 个索引中的 26 个 - "Gap"、"Gamma"、"Gplus" 和 "Tau" 缺失

r: NbClust() only computes 26 out of 30 indices - "Gap", "Gamma", "Gplus" and "Tau" are missing

我在我的 df 上调用 NbClust(),其中包含四列数值、缩放的 "NON-NA" 数据。我的代码如下所示

nc = NbClust(scale(df),distance="euclidean", min.nc=2, max.nc=7,method="complete")

?NbClust() 的描述中,据说它为数据计算了 30 个不同的索引,但在我的例子中,它只计算了 26 个,并省略了以下四个:

有谁知道为什么不计算它们?我很高兴收到任何建议,提示!

数据看起来像这样

df = structure(list(Birthrate = c(18.2, 8.5, 54.1, 1.4, 2.1, 83.6, 
17, 1, 0.8, 61.7, 4.9, 7.9, 2, 14.2, 48.2, 17.1, 10.4, 37.5, 
1.6, 49.5, 10.8, 6.2, 7.1, 7.8, 3, 3.7, 4.2, 8.7), GDP = c(1.22, 
0.06, 0, 0.54, 2.34, 0.74, 1.03, 1.21, 0, 0.2, 1.41, 0.79, 2.75, 
0.03, 11.13, 0.05, 2.99, 0.71, 0, 0.9, 1.15, 0, 1.15, 1.44, 0, 
0.71, 1.21, 1.45), Income = c(11.56, 146.75, 167.23, 7, 7, 7, 
10.07, 7, 7, 7, 47.43, 20.42, 7.52, 7, 7, 15.98, 15.15, 20.42, 
7, 22.6, 7, 7, 18.55, 7, 7.7, 7, 7, 7), Population = c(54, 94, 
37, 95, 98, 31, 78, 97, 95, 74, 74, 81, 95, 16, 44, 63, 95, 20, 
95, 83, 98, 98, 84, 62, 98, 98, 97, 98)), .Names = c("Birthrate", 
"GDP", "Income", "Population"), class = "data.frame", row.names = c(NA, 
-28L))

你想要:

nc = NbClust(scale(df),distance="euclidean", min.nc=2,max.nc=7,
  method="complete", index="alllong")