Spark Scala DataFrame 单行转换为 JSON 用于 PostgreSQL 插入

Spark Scala DataFrame Single Row conversion to JSON for PostrgeSQL Insertion

使用名为 lastTail 的 DataFrame,我可以这样迭代:

import scalikejdbc._
// ... 
// Do Kafka Streaming to create DataFrame lastTail
// ...

lastTail.printSchema

lastTail.foreachPartition(iter => {

// open database connection from connection pool
// with scalikeJDBC (to PostgreSQL) 

  while(iter.hasNext) {
    val item = iter.next()
    println("****")
    println(item.getClass)
    println(item.getAs("fileGid"))
    println("Schema: "+item.schema)
    println("String: "+item.toString())
    println("Seqnce: "+item.toSeq)

    // convert this item into an XXX format (like JSON)
    // write row to DB in the selected format
  }
})

这会输出 "something like"(经过修订): root |-- fileGid: string (nullable = true) |-- eventStruct: struct (nullable = false) | |-- eventIndex: integer (nullable = true) | |-- eventGid: string (nullable = true) | |-- eventType: string (nullable = true) |-- revisionStruct: struct (nullable = false) | |-- eventIndex: integer (nullable = true) | |-- eventGid: string (nullable = true) | |-- eventType: string (nullable = true)

和(只有一个迭代项 - 已编辑,但希望语法也足够好)

**** class org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema 12345 Schema: StructType(StructField(fileGid,StringType,true), StructField(eventStruct,StructType(StructField(eventIndex,IntegerType,true), StructField(eventGid,StringType,true), StructField(eventType,StringType,true)), StructField(revisionStruct,StructType(StructField(eventIndex,IntegerType,true), StructField(eventGid,StringType,true), StructField(eventType,StringType,true), StructField(editIndex,IntegerType,true)),false)) String: [12345,[1,4,edit],[1,4,revision]] Seqnce: WrappedArray(12345, [1,4,edit], [1,4,revision])

注意:我在 https://github.com/koeninger/kafka-exactly-once/blob/master/src/main/scala/example/TransactionalPerPartition.scala, but with DataFrames instead. I am also following "Design Patterns for using foreachRDD" seen at http://spark.apache.org/docs/latest/streaming-programming-guide.html#performance-tuning 上做 val metric = iter.sum 的部分。

我如何转换它 org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema (参见 https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/rows.scala) 将迭代项转换为易于写入(JSON 或 ...?- 我是开放的)到 PostgreSQL 中的东西。 (如果不是 JSON,请建议如何将此值读回 DataFrame 以供在另一点使用。)

嗯,我想出了一个不同的方法来解决这个问题。

val ltk = lastTail.select($"fileGid").rdd.map(fileGid => fileGid.toString)
val ltv = lastTail.toJSON
val kvPair = ltk.zip(ltv)

然后我将简单地遍历 RDD 而不是 DataFrame。

kvPair.foreachPartition(iter => {
  while(iter.hasNext) {
    val item = iter.next()
    println(item.getClass)
    println(item)
  }
})

撇开数据不谈,我得到 class scala.Tuple2 这使得在 JDBC / PostgreSQL 中存储 KV 对变得更简单。

我确信还有其他方法不是解决方法。