在大型 Numpy 数组中利用对称性

Exploiting Symmetry in Large Numpy Array

想要制作大数组 B,它由较小的 numpy 数组 A 组成,以不同的方式翻转:

B[0,:,:,:,:]   = A
B[1,:,:,:,:]   = B[0,:,::-1,:,:]
B[2:4,:,:,:,:] = B[0:2,:,:,::-1,:]
B[4:8,:,:,:,:] = B[0:4,:,:,:,::-1]

有没有办法只在内存中存储A,而为B保留一些numpy数组的功能?我主要对两件事感兴趣:

我最后做的是创建一个 class 到 return 的 A 的任意反射部分的视图。我在 [=14 之后按 C 进行缩放以及求和=]ing 这个视图,目前看来已经够快了。这是没有错误检查的:

class SymmetricArray:
    '''
    Attributes:
        A (np.ndarray): an [m, (a,b,c...)] array.
        idx (np.ndarray): an [n,] array where idx[n] points to A[idx[n], ...]
            to be used.
        reflect (np.ndarray): an [n, d] array where every entry is 1 or -1 and
            reflect[n, i] indicates whether or not the ith dimension of
            A[idx[n], ...] should be reflected, and d = len(A.shape - 1).
    '''
    def __init__(self, A, idx, reflect):
        self.A = np.asarray(A)
        self.idx = np.asarray(idx, dtype=int)
        self.reflect = np.asarray(reflect, dtype=int)

    def __getitem__(self, ii):
        '''
        Returns:
            np.ndarray: appropriately reflected A[idx[ii], ...]
        '''
        a_mask = [slice(None, None, a) for a in self.reflect[ii, :]]
        return self.A[self.idx[ii], ...][a_mask]