用于面板 OLS 回归的 panelAR
panelAR for panel OLS regression
在使用 panelAR 函数执行面板数据回归时,设置 autoCorr = "none" 和 panelCorrMehotd = "none",对标准误差执行了哪些具体校正?我想它会等于 OLS 回归,但它们略有不同。
require(panelAR)
data(Rehm)
tempFormula <- NURR ~ gini + selfemp + cum_right + tradeopen
outPanelAR <- panelAR(tempFormula, data=Rehm, panelVar = "ccode", timeVar = "year",
autoCorr="none",
panelCorrMethod="none")
summary(outPanelAR)
Panel Regression with no autocorrelation and homoskedastic variance
Unbalanced Panel Design:
Total obs.: 75 Avg obs. per panel 3.75
Number of panels: 20 Max obs. per panel 4
Number of times: 4 Min obs. per panel 1
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 109.498372 4.066262 26.929 < 2e-16 ***
gini -1.987204 0.167623 -11.855 < 2e-16 ***
selfemp 0.288386 0.098038 2.942 0.004424 **
cum_right -0.014059 0.002393 -5.875 1.3e-07 ***
tradeopen 0.080068 0.019576 4.090 0.000114 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
R-squared: 0.7123
Wald statistic: 185.7221, Pr(>Chisq(4)): 0
outLM <- lm(tempFormula, data=Rehm)
summary(outLM)
Call:
lm(formula = tempFormula, data = Rehm)
Residuals:
Min 1Q Median 3Q Max
-13.4097 -4.0381 0.3117 4.1815 13.8443
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 109.498372 4.208981 26.015 < 2e-16 ***
gini -1.987204 0.173506 -11.453 < 2e-16 ***
selfemp 0.288386 0.101479 2.842 0.005872 **
cum_right -0.014059 0.002477 -5.676 2.89e-07 ***
tradeopen 0.080068 0.020263 3.951 0.000183 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 6.054 on 70 degrees of freedom
Multiple R-squared: 0.7123, Adjusted R-squared: 0.6959
F-statistic: 43.34 on 4 and 70 DF, p-value: < 2.2e-16
您需要将自由度校正设置为 TRUE
才能获得相同的结果:
outPanelAR2 <- panelAR(tempFormula, data=Rehm, panelVar = "ccode", timeVar = "year",
autoCorr="none",
panelCorrMethod="none",
dof.correction = TRUE)
summary(outPanelAR2)
Panel Regression with no autocorrelation and homoskedastic variance
Unbalanced Panel Design:
Total obs.: 75 Avg obs. per panel 3.75
Number of panels: 20 Max obs. per panel 4
Number of times: 4 Min obs. per panel 1
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 109.4983720122888115611 4.2089806065126253998 26.0154099999999993 < 2.22e-16 ***
gini -1.9872037111259028830 0.1735058460730489749 -11.4532399999999992 < 2.22e-16 ***
selfemp 0.2883855296759073594 0.1014792385556597121 2.8418199999999998 0.00587203 **
cum_right -0.0140594458309947108 0.0024770526774808253 -5.6758800000000003 2.8949e-07 ***
tradeopen 0.0800681086902131078 0.0202628791182291289 3.9514700000000000 0.00018318 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.050000000000000003 ‘.’ 0.10000000000000001 ‘ ’ 1
R-squared: 0.7123
Wald statistic: 173.3406, Pr(>Chisq(4)): 0
在使用 panelAR 函数执行面板数据回归时,设置 autoCorr = "none" 和 panelCorrMehotd = "none",对标准误差执行了哪些具体校正?我想它会等于 OLS 回归,但它们略有不同。
require(panelAR)
data(Rehm)
tempFormula <- NURR ~ gini + selfemp + cum_right + tradeopen
outPanelAR <- panelAR(tempFormula, data=Rehm, panelVar = "ccode", timeVar = "year",
autoCorr="none",
panelCorrMethod="none")
summary(outPanelAR)
Panel Regression with no autocorrelation and homoskedastic variance
Unbalanced Panel Design:
Total obs.: 75 Avg obs. per panel 3.75
Number of panels: 20 Max obs. per panel 4
Number of times: 4 Min obs. per panel 1
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 109.498372 4.066262 26.929 < 2e-16 ***
gini -1.987204 0.167623 -11.855 < 2e-16 ***
selfemp 0.288386 0.098038 2.942 0.004424 **
cum_right -0.014059 0.002393 -5.875 1.3e-07 ***
tradeopen 0.080068 0.019576 4.090 0.000114 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
R-squared: 0.7123
Wald statistic: 185.7221, Pr(>Chisq(4)): 0
outLM <- lm(tempFormula, data=Rehm)
summary(outLM)
Call:
lm(formula = tempFormula, data = Rehm)
Residuals:
Min 1Q Median 3Q Max
-13.4097 -4.0381 0.3117 4.1815 13.8443
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 109.498372 4.208981 26.015 < 2e-16 ***
gini -1.987204 0.173506 -11.453 < 2e-16 ***
selfemp 0.288386 0.101479 2.842 0.005872 **
cum_right -0.014059 0.002477 -5.676 2.89e-07 ***
tradeopen 0.080068 0.020263 3.951 0.000183 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 6.054 on 70 degrees of freedom
Multiple R-squared: 0.7123, Adjusted R-squared: 0.6959
F-statistic: 43.34 on 4 and 70 DF, p-value: < 2.2e-16
您需要将自由度校正设置为 TRUE
才能获得相同的结果:
outPanelAR2 <- panelAR(tempFormula, data=Rehm, panelVar = "ccode", timeVar = "year",
autoCorr="none",
panelCorrMethod="none",
dof.correction = TRUE)
summary(outPanelAR2)
Panel Regression with no autocorrelation and homoskedastic variance
Unbalanced Panel Design:
Total obs.: 75 Avg obs. per panel 3.75
Number of panels: 20 Max obs. per panel 4
Number of times: 4 Min obs. per panel 1
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 109.4983720122888115611 4.2089806065126253998 26.0154099999999993 < 2.22e-16 ***
gini -1.9872037111259028830 0.1735058460730489749 -11.4532399999999992 < 2.22e-16 ***
selfemp 0.2883855296759073594 0.1014792385556597121 2.8418199999999998 0.00587203 **
cum_right -0.0140594458309947108 0.0024770526774808253 -5.6758800000000003 2.8949e-07 ***
tradeopen 0.0800681086902131078 0.0202628791182291289 3.9514700000000000 0.00018318 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.050000000000000003 ‘.’ 0.10000000000000001 ‘ ’ 1
R-squared: 0.7123
Wald statistic: 173.3406, Pr(>Chisq(4)): 0