Python pandas 中的日期时间 strptime:怎么了?
Datetime strptime in Python pandas : what's wrong?
import datetime as datetime
datetime.strptime('2013-01-01 09:10:12', '%Y-%m-%d %H:%M:%S')
产生
AttributeError Traceback (most recent call
last) in ()
1 import datetime as datetime
----> 2 datetime.strptime('2013-01-01 09:10:12', '%Y-%m-%d %H:%M:%S')
3 z = minidf['Dates']
4 z
AttributeError: 'module' object has no attribute 'strptime'
我的目标是转换格式仍为数据对象的 pandas 数据框列
import datetime as datetime
#datetime.strptime('2013-01-01 09:10:12', '%Y-%m-%d %H:%M:%S')
z = minidf['Dates']
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00
5 2015-05-13 23:30:00
6 2015-05-13 23:30:00
7 2015-05-13 23:30:00
8 2015-05-13 23:00:00
9 2015-05-13 23:00:00
10 2015-05-13 22:58:00
Name: Dates, dtype: object
额外的问题是,我使用 pd.read_csv
函数从一个包含更多列的较大文件中获取了此列。是否可以传递参数,使 pd.read_csv
直接将其转换为 dtype: datetime64[ns]
格式
我想你可以用来转换 to_datetime
:
print pd.to_datetime('2013-01-01 09:10:12', format='%Y-%m-%d %H:%M:%S')
2013-01-01 09:10:12
print pd.to_datetime('2013-01-01 09:10:12')
2013-01-01 09:10:12
如果需要在函数read_csv
中转换,添加参数parse_dates
:
df = pd.read_csv('filename', parse_dates=['Dates'])
样本:
import pandas as pd
import io
temp=u"""Dates
2015-05-13 23:53:00
2015-05-13 23:53:00
2015-05-13 23:33:00
2015-05-13 23:30:00
2015-05-13 23:30:00
2015-05-13 23:30:00
2015-05-13 23:30:00
2015-05-13 23:30:00
2015-05-13 23:00:00
2015-05-13 23:00:00
2015-05-13 22:58:00
"""
#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp), parse_dates=['Dates'])
print df
Dates
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00
5 2015-05-13 23:30:00
6 2015-05-13 23:30:00
7 2015-05-13 23:30:00
8 2015-05-13 23:00:00
9 2015-05-13 23:00:00
10 2015-05-13 22:58:00
print df.dtypes
Dates datetime64[ns]
dtype: object
to_datetime
的另一个解决方案:
print pd.to_datetime(df['Dates'])
样本:
print df
Dates
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00
5 2015-05-13 23:30:00
6 2015-05-13 23:30:00
7 2015-05-13 23:30:00
8 2015-05-13 23:00:00
9 2015-05-13 23:00:00
10 2015-05-13 22:58:00
print df.dtypes
Dates object
df['Dates'] = pd.to_datetime(df['Dates'])
print df
Dates
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00
5 2015-05-13 23:30:00
6 2015-05-13 23:30:00
7 2015-05-13 23:30:00
8 2015-05-13 23:00:00
9 2015-05-13 23:00:00
10 2015-05-13 22:58:00
print df.dtypes
Dates datetime64[ns]
dtype: object
AttributeError: 'module' object has no attribute 'strptime'
strptime
在 datetime
上不可用,但在 datetime.datetime
上可用
>>> from datetime import datetime
>>> datetime.strptime('2013-01-01 09:10:12', '%Y-%m-%d %H:%M:%S')
datetime.datetime(2013, 1, 1, 9, 10, 12)
仅导入模块
>>> import datetime
>>> datetime.datetime.strptime('2013-01-01 09:10:12', '%Y-%m-%d %H:%M:%S')
datetime.datetime(2013, 1, 1, 9, 10, 12)
正在将 class 从模块导入当前上下文:
>>> from datetime import datetime
>>> datetime.strptime('2013-01-01 09:10:12', '%Y-%m-%d %H:%M:%S')
datetime.datetime(2013, 1, 1, 9, 10, 12)
>>>
import datetime as datetime
datetime.strptime('2013-01-01 09:10:12', '%Y-%m-%d %H:%M:%S')
产生
AttributeError Traceback (most recent call last) in () 1 import datetime as datetime ----> 2 datetime.strptime('2013-01-01 09:10:12', '%Y-%m-%d %H:%M:%S') 3 z = minidf['Dates'] 4 z
AttributeError: 'module' object has no attribute 'strptime'
我的目标是转换格式仍为数据对象的 pandas 数据框列
import datetime as datetime
#datetime.strptime('2013-01-01 09:10:12', '%Y-%m-%d %H:%M:%S')
z = minidf['Dates']
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00
5 2015-05-13 23:30:00
6 2015-05-13 23:30:00
7 2015-05-13 23:30:00
8 2015-05-13 23:00:00
9 2015-05-13 23:00:00
10 2015-05-13 22:58:00
Name: Dates, dtype: object
额外的问题是,我使用 pd.read_csv
函数从一个包含更多列的较大文件中获取了此列。是否可以传递参数,使 pd.read_csv
直接将其转换为 dtype: datetime64[ns]
格式
我想你可以用来转换 to_datetime
:
print pd.to_datetime('2013-01-01 09:10:12', format='%Y-%m-%d %H:%M:%S')
2013-01-01 09:10:12
print pd.to_datetime('2013-01-01 09:10:12')
2013-01-01 09:10:12
如果需要在函数read_csv
中转换,添加参数parse_dates
:
df = pd.read_csv('filename', parse_dates=['Dates'])
样本:
import pandas as pd
import io
temp=u"""Dates
2015-05-13 23:53:00
2015-05-13 23:53:00
2015-05-13 23:33:00
2015-05-13 23:30:00
2015-05-13 23:30:00
2015-05-13 23:30:00
2015-05-13 23:30:00
2015-05-13 23:30:00
2015-05-13 23:00:00
2015-05-13 23:00:00
2015-05-13 22:58:00
"""
#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp), parse_dates=['Dates'])
print df
Dates
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00
5 2015-05-13 23:30:00
6 2015-05-13 23:30:00
7 2015-05-13 23:30:00
8 2015-05-13 23:00:00
9 2015-05-13 23:00:00
10 2015-05-13 22:58:00
print df.dtypes
Dates datetime64[ns]
dtype: object
to_datetime
的另一个解决方案:
print pd.to_datetime(df['Dates'])
样本:
print df
Dates
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00
5 2015-05-13 23:30:00
6 2015-05-13 23:30:00
7 2015-05-13 23:30:00
8 2015-05-13 23:00:00
9 2015-05-13 23:00:00
10 2015-05-13 22:58:00
print df.dtypes
Dates object
df['Dates'] = pd.to_datetime(df['Dates'])
print df
Dates
0 2015-05-13 23:53:00
1 2015-05-13 23:53:00
2 2015-05-13 23:33:00
3 2015-05-13 23:30:00
4 2015-05-13 23:30:00
5 2015-05-13 23:30:00
6 2015-05-13 23:30:00
7 2015-05-13 23:30:00
8 2015-05-13 23:00:00
9 2015-05-13 23:00:00
10 2015-05-13 22:58:00
print df.dtypes
Dates datetime64[ns]
dtype: object
AttributeError: 'module' object has no attribute 'strptime'
strptime
在 datetime
上不可用,但在 datetime.datetime
>>> from datetime import datetime
>>> datetime.strptime('2013-01-01 09:10:12', '%Y-%m-%d %H:%M:%S')
datetime.datetime(2013, 1, 1, 9, 10, 12)
仅导入模块
>>> import datetime
>>> datetime.datetime.strptime('2013-01-01 09:10:12', '%Y-%m-%d %H:%M:%S')
datetime.datetime(2013, 1, 1, 9, 10, 12)
正在将 class 从模块导入当前上下文:
>>> from datetime import datetime
>>> datetime.strptime('2013-01-01 09:10:12', '%Y-%m-%d %H:%M:%S')
datetime.datetime(2013, 1, 1, 9, 10, 12)
>>>