如何将我的列表列表转换为固定大小的矩阵?
How can I convert my list of lists to fixed size matrix?
我想创建卷边矩阵。我刚刚建立了类似乘法群的 Galois 域。这就是我得到的:
MultiplicativeGroup = DeleteDuplicates[
NestList[
PolynomialMod[
PolynomialMod[(generating*#), irreducablePolynomial], 2] &, 1,
n]];
{1, a, a^2, 1 + a^2, 1 + a + a^2, 1 + a, a + a^2}
之后我将它转换成二进制形式,如下所示:
CoefficientList[MultiplicativeGroup, a]
{{1}, {0, 1}, {0, 0, 1}, {1, 0, 1}, {1, 1, 1}, {1, 1}, {0, 1 , 1}}
但我坚持将其转换为二进制矩阵形式。它必须看起来像这样:
(0 0 1 1 1 0 1
0 1 0 0 1 1 1
1 0 0 1 1 1 0)
但我其实不知道该怎么做。我不能转置它或做任何其他事情。你能帮帮我吗?
array = {{1}, {0, 1}, {0, 0, 1}, {1, 0, 1}, {1, 1, 1}, {1, 1}, {0, 1, 1}}
PadLeft[#, 3] & /@ Reverse[array, 2] // Transpose
我是这样做的:
generating = a^Mod[(2^m - 1)/n, m];
MultiplicativeGroup = DeleteDuplicates@
NestList[
PolynomialMod[
PolynomialMod[(generating*#), irreducablePolynomial], 2] &, 1,
n];
Print[MatrixForm[Reverse[Transpose[CoefficientList[MG, a, m]]]]];
我想创建卷边矩阵。我刚刚建立了类似乘法群的 Galois 域。这就是我得到的:
MultiplicativeGroup = DeleteDuplicates[
NestList[
PolynomialMod[
PolynomialMod[(generating*#), irreducablePolynomial], 2] &, 1,
n]];
{1, a, a^2, 1 + a^2, 1 + a + a^2, 1 + a, a + a^2}
之后我将它转换成二进制形式,如下所示:
CoefficientList[MultiplicativeGroup, a]
{{1}, {0, 1}, {0, 0, 1}, {1, 0, 1}, {1, 1, 1}, {1, 1}, {0, 1 , 1}} 但我坚持将其转换为二进制矩阵形式。它必须看起来像这样:
(0 0 1 1 1 0 1
0 1 0 0 1 1 1
1 0 0 1 1 1 0)
但我其实不知道该怎么做。我不能转置它或做任何其他事情。你能帮帮我吗?
array = {{1}, {0, 1}, {0, 0, 1}, {1, 0, 1}, {1, 1, 1}, {1, 1}, {0, 1, 1}}
PadLeft[#, 3] & /@ Reverse[array, 2] // Transpose
我是这样做的:
generating = a^Mod[(2^m - 1)/n, m];
MultiplicativeGroup = DeleteDuplicates@
NestList[
PolynomialMod[
PolynomialMod[(generating*#), irreducablePolynomial], 2] &, 1,
n];
Print[MatrixForm[Reverse[Transpose[CoefficientList[MG, a, m]]]]];