将一条二次贝塞尔曲线一分为二
Split one quadratic bezier curve into two
所以我有一个假想的圆被分成了多个部分(为了简单我用了8个,但最后我想把它分成16个或32个部分)
然后我有 N 条二次贝塞尔曲线,它们位于 2 个最近的线段之间。它可以停留在圆上或离中心更远,但不能比圆更近。
我知道如何找到,我应该在 行中寻找交叉点,但我不知道如何将它分成两部分......我知道,如果我寻找交叉点直线和曲线的我应该得到前一条曲线应该结束而下一条应该开始的点,并且通过推导我可以得到向量,但我不知道该怎么做。
示例图片,其中我只有 8 个部分以便于解决问题。
重点是,使用贝塞尔曲线制作 "progress" 条形图。旁注:曲线会在每一帧发生变化,因为它们是音乐可视化的一部分。
如果有更好的吐色曲线方法,我全力支持!
[编辑]
获取长度的算法仍然无法正常工作,似乎我忘记了计算最后一条路径,如果有人想指出我的解决方案那将是非常好的,因为我现在没有时间。 (要不我周末再找找。。。)
由于您不需要支持旧版 IE (<=11),一种简单的方法是使用 setLineDash()
方法。
这将允许您只绘制一次路径,并且只需要获得路径的全长。
为此,我使用了 this algo made by tunght13488 的 js 实现。可能会有更好的实现。
var ctx = c.getContext('2d');
var percent = 90;
var length = 0;
// all our quadraticCurves points
var curves = [
[146, 146, 134, 118, 184, 103],
[217, 91, 269, 81, 271, 107],
[263, 155, 381, 158, 323, 173],
[279, 182, 314, 225, 281, 223],
[246, 219, 247, 274, 207, 236],
[177, 245, 133, 248, 137, 211],
[123, 238, 10, 145, 130, 150]
];
// get the full length of our spline
curves.forEach(function(c) {
length += quadraticBezierLength.apply(null, c);
});
// that's still not it...
length += quadraticBezierLength.apply(null,curves[curves.length-1]);
var anim = function() {
var offset = (percent / 100) * length;
ctx.clearRect(0, 0, c.width, c.height);
ctx.beginPath();
ctx.moveTo(133, 150);
// draw our splines
curves.forEach(function(c) {
ctx.bezierCurveTo.apply(ctx, c);
})
ctx.closePath();
// the non completed part
ctx.strokeStyle = "gray";
// this will make the part from 0 to offset non drawn
ctx.setLineDash([0, offset, length]);
ctx.stroke();
// the completed part
ctx.setLineDash([offset, length]);
ctx.strokeStyle = "blue";
ctx.stroke();
percent = (percent + .25) % 100;
requestAnimationFrame(anim);
}
// modified from https://gist.github.com/tunght13488/6744e77c242cc7a94859
function Point(x, y) {
this.x = x;
this.y = y;
}
function quadraticBezierLength(p0x, p0y, p1x, p1y, p2x, p2y) {
var a = new Point(
p0x - 2 * p1x + p2x,
p0y - 2 * p1y + p2y
);
var b = new Point(
2 * p1x - 2 * p0x,
2 * p1y - 2 * p0y
);
var A = 4 * (a.x * a.x + a.y * a.y);
var B = 4 * (a.x * b.x + a.y * b.y);
var C = b.x * b.x + b.y * b.y;
var Sabc = 2 * Math.sqrt(A + B + C);
var A_2 = Math.sqrt(A);
var A_32 = 2 * A * A_2;
var C_2 = 2 * Math.sqrt(C);
var BA = B / A_2;
return (A_32 * Sabc + A_2 * B * (Sabc - C_2) + (4 * C * A - B * B) * Math.log((2 * A_2 + BA + Sabc) / (BA + C_2))) / (4 * A_32);
};
anim();
<canvas width="500" height="500" id="c"></canvas>
拆分三次和二次贝塞尔曲线
分割贝塞尔曲线相对容易。由于已经有一个答案,我将只复制在其路径范围从 0 到 1 的位置处拆分单个贝塞尔曲线、三次曲线或二次曲线所需的函数。函数 Bezier.splitAt
采用 position
(0到 1) 并根据 start = true
returns 从 0 到位置或如果 start = false
returns 从位置到 1 的贝塞尔曲线。它将处理二阶(二次)和三阶(立方)贝塞尔
用法示例
var bezier = createBezierCubic( 146, 146, 134, 118, 184, 103, 217, 91 );
// split in two
var startingHalf = bezier.splitAt(0.5, true);
var endingHalf = bezier.splitAt(0.5, false);
// split into four.
var quart1 = startingHalf.splitAt(0.5, true)
var quart2 = startingHalf.splitAt(0.5, false)
var quart3 = endingHalf.splitAt(0.5, true)
var quart4 = endingHalf.splitAt(0.5, false)
// getting a segment
var startFrom = 0.3;
var endAt = 0.8;
var section = bezier.splitAt(startFrom, false).splitAt((endAt - startFrom) / (1 - startFrom), true);
贝塞尔曲线由一个起点和终点p1、p2和一个或两个控制点cp1、cp2组成。如果贝塞尔曲线是二阶的,则 cp2 未定义。这些点是 Vec,取自 Vec.x、Vec.y
渲染二阶
ctx.moveTo(bezier.p1.x, bezier.p1.y);
ctx.quadraticCurveTo(bezier.cp1.x, bezier.cp1.y, bezier.p2.x, bezier.p2.y);
渲染三阶
ctx.moveTo(bezier.p1.x, bezier.p1.y);
ctx.bezierCurveTo(bezier.cp1.x, bezier.cp1.y, bezier.cp2.x, bezier.cp2.y, bezier.p2.x, bezier.p2.y);
有依赖的代码
你们都是程序员,请查看代码以获取更多使用信息。警告可能有拼写错误,因为这是从更广泛的几何界面中提取的。
var geom = (function(){
function Vec(x,y){ // creates a vector
if(x === undefined){
x = 1;
y = 0;
}
this.x = x;
this.y = y;
}
Vec.prototype.set = function(x,y){
this.x = x;
this.y = y;
return this;
};
// closure vars to stop constant GC
var v1 = Vec();
var v2 = Vec();
var v3 = Vec();
var v4 = Vec();
var v5 = Vec();
const BEZIER_TYPES = {
cubic : "cubic",
quadratic : "quadratic",
};
// creates a bezier p1 and p2 are the end points as vectors.
// if p1 is a string then returns a empty bezier object.
// with the type as quadratic (default) or cubic
// cp1, [cp2] are the control points. cp2 is optional and if omitted will create a quadratic
function Bezier(p1,p2,cp1,cp2){
if(typeof p1 === 'string'){
this.p1 = new Vec();
this.p2 = new Vec();
this.cp1 = new Vec();
if(p1 === BEZIER_TYPES.cubic){
this.cp2 = new Vec();
}
}else{
this.p1 = p1 === undefined ? new Vec() : p1;
this.p2 = p2 === undefined ? new Vec() : p2;
this.cp1 = cp1 === undefined ? new Vec() : cp1;
this.cp2 = cp2;
}
}
Bezier.prototype.type = function(){
if(this.cp2 === undefined){
return BEZIER_TYPES.quadratic;
}
return BEZIER_TYPES.cubic;
}
Bezier.prototype.splitAt = function(position,start){ // 0 <= position <= 1 where to split. Start if true returns 0 to position and else from position to 1
var retBezier,c;
if(this.cp2 !== undefined){ retBezier = new Bezier(BEZIER_TYPES.cubic); }
else{ retBezier = new Bezier(BEZIER_TYPES.quadratic); }
v1.x = this.p1.x;
v1.y = this.p1.y;
c = Math.max(0, Math.min(1, position)); // clamp for safe use in Stack Overflow answer
if(start === true){
retBezier.p1.x = this.p1.x;
retBezier.p1.y = this.p1.y;
}else{
retBezier.p2.x = this.p2.x;
retBezier.p2.y = this.p2.y;
}
if(this.cp2 === undefined){ // returns a quadratic
v2.x = this.cp1.x;
v2.y = this.cp1.y;
if(start){
retBezier.cp1.x = (v1.x += (v2.x - v1.x) * c);
retBezier.cp1.y = (v1.y += (v2.y - v1.y) * c);
v2.x += (this.p2.x - v2.x) * c;
v2.y += (this.p2.y - v2.y) * c;
retBezier.p2.x = v1.x + (v2.x - v1.x) * c;
retBezier.p2.y = v1.y + (v2.y - v1.y) * c;
retBezier.cp2 = undefined;
}else{
v1.x += (v2.x - v1.x) * c;
v1.y += (v2.y - v1.y) * c;
retBezier.cp1.x = (v2.x += (this.p2.x - v2.x) * c);
retBezier.cp1.y = (v2.y += (this.p2.y - v2.y) * c);
retBezier.p1.x = v1.x + (v2.x - v1.x) * c;
retBezier.p1.y = v1.y + (v2.y - v1.y) * c;
retBezier.cp2 = undefined;
}
return retBezier;
}
v2.x = this.cp1.x;
v3.x = this.cp2.x;
v2.y = this.cp1.y;
v3.y = this.cp2.y;
if(start){
retBezier.cp1.x = (v1.x += (v2.x - v1.x) * c);
retBezier.cp1.y = (v1.y += (v2.y - v1.y) * c);
v2.x += (v3.x - v2.x) * c;
v2.x += (v3.x - v2.x) * c;
v2.y += (v3.y - v2.y) * c;
v3.x += (this.p2.x - v3.x) * c;
v3.y += (this.p2.y - v3.y) * c;
retBezier.cp2.x = (v1.x += (v2.x - v1.x) * c);
retBezier.cp2.y = (v1.y += (v2.y - v1.y) * c);
retBezier.p2.y = v1.y + (v2.y - v1.y) * c;
retBezier.p2.x = v1.x + (v2.x - v1.x) * c;
}else{
v1.x += (v2.x - v1.x) * c;
v1.y += (v2.y - v1.y) * c;
v2.x += (v3.x - v2.x) * c;
v2.y += (v3.y - v2.y) * c;
retBezier.cp2.x = (v3.x += (this.p2.x - v3.x) * c);
retBezier.cp2.y = (v3.y += (this.p2.y - v3.y) * c);
v1.x += (v2.x - v1.x) * c;
v1.y += (v2.y - v1.y) * c;
retBezier.cp1.x = (v2.x += (v3.x - v2.x) * c);
retBezier.cp1.y = (v2.y += (v3.y - v2.y) * c);
retBezier.p1.x = v1.x + (v2.x - v1.x) * c;
retBezier.p1.y = v1.y + (v2.y - v1.y) * c;
}
return retBezier;
}
return {
Vec : Vec,
Bezier : Bezier,
bezierTypes : BEZIER_TYPES,
};
})();
// helper function
// Returns second order quadratic from points in the same order as most rendering api take then
// The second two coordinates x1,y1 are the control points
function createBezierQuadratic(x, y, x1, y1, x2, y2){
var b = new geom.Bezier(geom.bezierTypes.quadratic);
b.p1.set(x, y);
b.p2.set(x2, y2);
b.cp1.set(x1, y1);
return b;
}
// Returns third order cubic from points in the same order as most rendering api take then
// The coordinates x1, y1 and x2, y2 are the control points
function createBezierCubic(x, y, x1, y1, x2, y2, x3, y3){
var b = new geom.Bezier(geom.bezierTypes.cubic);
b.p1.set(x, y);
b.p2.set(x3, y3);
b.cp1.set(x1, y1);
b.cp2.set(x2, y2);
return b;
}
对于仍在访问此页面的任何人,请查看 Bezier.js
(https://github.com/Pomax/bezierjs), especially at the API: https://pomax.github.io/bezierjs/
您可以提取 t = 0.25
和 t = 0.75
之间的二次贝塞尔曲线,如下所示:
var curve = new Bezier(150,40 , 80,30 , 105,150);
var segment_curve = curve.split(0.25, 0.75);
context.moveTo(segment_curve.points[0].x, segment_curve.points[0].y);
context.quadraticCurveTo(segment_curve.points[1].x, segment_curve.points[1].y, segment_curve.points[2].x, segment_curve.points[2].y);
context.stroke();
所以我有一个假想的圆被分成了多个部分(为了简单我用了8个,但最后我想把它分成16个或32个部分)
然后我有 N 条二次贝塞尔曲线,它们位于 2 个最近的线段之间。它可以停留在圆上或离中心更远,但不能比圆更近。
我知道如何找到,我应该在 行中寻找交叉点,但我不知道如何将它分成两部分......我知道,如果我寻找交叉点直线和曲线的我应该得到前一条曲线应该结束而下一条应该开始的点,并且通过推导我可以得到向量,但我不知道该怎么做。
示例图片,其中我只有 8 个部分以便于解决问题。
重点是,使用贝塞尔曲线制作 "progress" 条形图。旁注:曲线会在每一帧发生变化,因为它们是音乐可视化的一部分。
如果有更好的吐色曲线方法,我全力支持!
[编辑]
获取长度的算法仍然无法正常工作,似乎我忘记了计算最后一条路径,如果有人想指出我的解决方案那将是非常好的,因为我现在没有时间。 (要不我周末再找找。。。)
由于您不需要支持旧版 IE (<=11),一种简单的方法是使用 setLineDash()
方法。
这将允许您只绘制一次路径,并且只需要获得路径的全长。
为此,我使用了 this algo made by tunght13488 的 js 实现。可能会有更好的实现。
var ctx = c.getContext('2d');
var percent = 90;
var length = 0;
// all our quadraticCurves points
var curves = [
[146, 146, 134, 118, 184, 103],
[217, 91, 269, 81, 271, 107],
[263, 155, 381, 158, 323, 173],
[279, 182, 314, 225, 281, 223],
[246, 219, 247, 274, 207, 236],
[177, 245, 133, 248, 137, 211],
[123, 238, 10, 145, 130, 150]
];
// get the full length of our spline
curves.forEach(function(c) {
length += quadraticBezierLength.apply(null, c);
});
// that's still not it...
length += quadraticBezierLength.apply(null,curves[curves.length-1]);
var anim = function() {
var offset = (percent / 100) * length;
ctx.clearRect(0, 0, c.width, c.height);
ctx.beginPath();
ctx.moveTo(133, 150);
// draw our splines
curves.forEach(function(c) {
ctx.bezierCurveTo.apply(ctx, c);
})
ctx.closePath();
// the non completed part
ctx.strokeStyle = "gray";
// this will make the part from 0 to offset non drawn
ctx.setLineDash([0, offset, length]);
ctx.stroke();
// the completed part
ctx.setLineDash([offset, length]);
ctx.strokeStyle = "blue";
ctx.stroke();
percent = (percent + .25) % 100;
requestAnimationFrame(anim);
}
// modified from https://gist.github.com/tunght13488/6744e77c242cc7a94859
function Point(x, y) {
this.x = x;
this.y = y;
}
function quadraticBezierLength(p0x, p0y, p1x, p1y, p2x, p2y) {
var a = new Point(
p0x - 2 * p1x + p2x,
p0y - 2 * p1y + p2y
);
var b = new Point(
2 * p1x - 2 * p0x,
2 * p1y - 2 * p0y
);
var A = 4 * (a.x * a.x + a.y * a.y);
var B = 4 * (a.x * b.x + a.y * b.y);
var C = b.x * b.x + b.y * b.y;
var Sabc = 2 * Math.sqrt(A + B + C);
var A_2 = Math.sqrt(A);
var A_32 = 2 * A * A_2;
var C_2 = 2 * Math.sqrt(C);
var BA = B / A_2;
return (A_32 * Sabc + A_2 * B * (Sabc - C_2) + (4 * C * A - B * B) * Math.log((2 * A_2 + BA + Sabc) / (BA + C_2))) / (4 * A_32);
};
anim();
<canvas width="500" height="500" id="c"></canvas>
拆分三次和二次贝塞尔曲线
分割贝塞尔曲线相对容易。由于已经有一个答案,我将只复制在其路径范围从 0 到 1 的位置处拆分单个贝塞尔曲线、三次曲线或二次曲线所需的函数。函数 Bezier.splitAt
采用 position
(0到 1) 并根据 start = true
returns 从 0 到位置或如果 start = false
returns 从位置到 1 的贝塞尔曲线。它将处理二阶(二次)和三阶(立方)贝塞尔
用法示例
var bezier = createBezierCubic( 146, 146, 134, 118, 184, 103, 217, 91 );
// split in two
var startingHalf = bezier.splitAt(0.5, true);
var endingHalf = bezier.splitAt(0.5, false);
// split into four.
var quart1 = startingHalf.splitAt(0.5, true)
var quart2 = startingHalf.splitAt(0.5, false)
var quart3 = endingHalf.splitAt(0.5, true)
var quart4 = endingHalf.splitAt(0.5, false)
// getting a segment
var startFrom = 0.3;
var endAt = 0.8;
var section = bezier.splitAt(startFrom, false).splitAt((endAt - startFrom) / (1 - startFrom), true);
贝塞尔曲线由一个起点和终点p1、p2和一个或两个控制点cp1、cp2组成。如果贝塞尔曲线是二阶的,则 cp2 未定义。这些点是 Vec,取自 Vec.x、Vec.y
渲染二阶
ctx.moveTo(bezier.p1.x, bezier.p1.y);
ctx.quadraticCurveTo(bezier.cp1.x, bezier.cp1.y, bezier.p2.x, bezier.p2.y);
渲染三阶
ctx.moveTo(bezier.p1.x, bezier.p1.y);
ctx.bezierCurveTo(bezier.cp1.x, bezier.cp1.y, bezier.cp2.x, bezier.cp2.y, bezier.p2.x, bezier.p2.y);
有依赖的代码
你们都是程序员,请查看代码以获取更多使用信息。警告可能有拼写错误,因为这是从更广泛的几何界面中提取的。
var geom = (function(){
function Vec(x,y){ // creates a vector
if(x === undefined){
x = 1;
y = 0;
}
this.x = x;
this.y = y;
}
Vec.prototype.set = function(x,y){
this.x = x;
this.y = y;
return this;
};
// closure vars to stop constant GC
var v1 = Vec();
var v2 = Vec();
var v3 = Vec();
var v4 = Vec();
var v5 = Vec();
const BEZIER_TYPES = {
cubic : "cubic",
quadratic : "quadratic",
};
// creates a bezier p1 and p2 are the end points as vectors.
// if p1 is a string then returns a empty bezier object.
// with the type as quadratic (default) or cubic
// cp1, [cp2] are the control points. cp2 is optional and if omitted will create a quadratic
function Bezier(p1,p2,cp1,cp2){
if(typeof p1 === 'string'){
this.p1 = new Vec();
this.p2 = new Vec();
this.cp1 = new Vec();
if(p1 === BEZIER_TYPES.cubic){
this.cp2 = new Vec();
}
}else{
this.p1 = p1 === undefined ? new Vec() : p1;
this.p2 = p2 === undefined ? new Vec() : p2;
this.cp1 = cp1 === undefined ? new Vec() : cp1;
this.cp2 = cp2;
}
}
Bezier.prototype.type = function(){
if(this.cp2 === undefined){
return BEZIER_TYPES.quadratic;
}
return BEZIER_TYPES.cubic;
}
Bezier.prototype.splitAt = function(position,start){ // 0 <= position <= 1 where to split. Start if true returns 0 to position and else from position to 1
var retBezier,c;
if(this.cp2 !== undefined){ retBezier = new Bezier(BEZIER_TYPES.cubic); }
else{ retBezier = new Bezier(BEZIER_TYPES.quadratic); }
v1.x = this.p1.x;
v1.y = this.p1.y;
c = Math.max(0, Math.min(1, position)); // clamp for safe use in Stack Overflow answer
if(start === true){
retBezier.p1.x = this.p1.x;
retBezier.p1.y = this.p1.y;
}else{
retBezier.p2.x = this.p2.x;
retBezier.p2.y = this.p2.y;
}
if(this.cp2 === undefined){ // returns a quadratic
v2.x = this.cp1.x;
v2.y = this.cp1.y;
if(start){
retBezier.cp1.x = (v1.x += (v2.x - v1.x) * c);
retBezier.cp1.y = (v1.y += (v2.y - v1.y) * c);
v2.x += (this.p2.x - v2.x) * c;
v2.y += (this.p2.y - v2.y) * c;
retBezier.p2.x = v1.x + (v2.x - v1.x) * c;
retBezier.p2.y = v1.y + (v2.y - v1.y) * c;
retBezier.cp2 = undefined;
}else{
v1.x += (v2.x - v1.x) * c;
v1.y += (v2.y - v1.y) * c;
retBezier.cp1.x = (v2.x += (this.p2.x - v2.x) * c);
retBezier.cp1.y = (v2.y += (this.p2.y - v2.y) * c);
retBezier.p1.x = v1.x + (v2.x - v1.x) * c;
retBezier.p1.y = v1.y + (v2.y - v1.y) * c;
retBezier.cp2 = undefined;
}
return retBezier;
}
v2.x = this.cp1.x;
v3.x = this.cp2.x;
v2.y = this.cp1.y;
v3.y = this.cp2.y;
if(start){
retBezier.cp1.x = (v1.x += (v2.x - v1.x) * c);
retBezier.cp1.y = (v1.y += (v2.y - v1.y) * c);
v2.x += (v3.x - v2.x) * c;
v2.x += (v3.x - v2.x) * c;
v2.y += (v3.y - v2.y) * c;
v3.x += (this.p2.x - v3.x) * c;
v3.y += (this.p2.y - v3.y) * c;
retBezier.cp2.x = (v1.x += (v2.x - v1.x) * c);
retBezier.cp2.y = (v1.y += (v2.y - v1.y) * c);
retBezier.p2.y = v1.y + (v2.y - v1.y) * c;
retBezier.p2.x = v1.x + (v2.x - v1.x) * c;
}else{
v1.x += (v2.x - v1.x) * c;
v1.y += (v2.y - v1.y) * c;
v2.x += (v3.x - v2.x) * c;
v2.y += (v3.y - v2.y) * c;
retBezier.cp2.x = (v3.x += (this.p2.x - v3.x) * c);
retBezier.cp2.y = (v3.y += (this.p2.y - v3.y) * c);
v1.x += (v2.x - v1.x) * c;
v1.y += (v2.y - v1.y) * c;
retBezier.cp1.x = (v2.x += (v3.x - v2.x) * c);
retBezier.cp1.y = (v2.y += (v3.y - v2.y) * c);
retBezier.p1.x = v1.x + (v2.x - v1.x) * c;
retBezier.p1.y = v1.y + (v2.y - v1.y) * c;
}
return retBezier;
}
return {
Vec : Vec,
Bezier : Bezier,
bezierTypes : BEZIER_TYPES,
};
})();
// helper function
// Returns second order quadratic from points in the same order as most rendering api take then
// The second two coordinates x1,y1 are the control points
function createBezierQuadratic(x, y, x1, y1, x2, y2){
var b = new geom.Bezier(geom.bezierTypes.quadratic);
b.p1.set(x, y);
b.p2.set(x2, y2);
b.cp1.set(x1, y1);
return b;
}
// Returns third order cubic from points in the same order as most rendering api take then
// The coordinates x1, y1 and x2, y2 are the control points
function createBezierCubic(x, y, x1, y1, x2, y2, x3, y3){
var b = new geom.Bezier(geom.bezierTypes.cubic);
b.p1.set(x, y);
b.p2.set(x3, y3);
b.cp1.set(x1, y1);
b.cp2.set(x2, y2);
return b;
}
对于仍在访问此页面的任何人,请查看 Bezier.js
(https://github.com/Pomax/bezierjs), especially at the API: https://pomax.github.io/bezierjs/
您可以提取 t = 0.25
和 t = 0.75
之间的二次贝塞尔曲线,如下所示:
var curve = new Bezier(150,40 , 80,30 , 105,150);
var segment_curve = curve.split(0.25, 0.75);
context.moveTo(segment_curve.points[0].x, segment_curve.points[0].y);
context.quadraticCurveTo(segment_curve.points[1].x, segment_curve.points[1].y, segment_curve.points[2].x, segment_curve.points[2].y);
context.stroke();