方法或委托与其他委托参数不匹配
A method or delegate does not match other delegate parameters
我正在为 Google 科学博览会创建一个 AI 系统,但我遇到了困难,我似乎找不到标题中所述问题的错误。在以下主题中搜索 Google returns 个空答案。我正在使用 Monodevelop;
这是我的代码:
using UnityEngine;
using System;
using System.Collections;
using System.Collections.Generic;
using System.ComponentModel;
using System.ComponentModel.Design;
namespace NeuralNetwork {
public class DecisionMaking {
public static string DecideString(List<string> choice){
choice.ToArray ();
int mychoice = UnityEngine.Random.Range (0, choice.Count);
return choice [mychoice];
}
public static Vector3 DecideVector(List<Vector3> choice){
choice.ToArray ();
int mychoice = UnityEngine.Random.Range (0, choice.Count);
return choice [mychoice];
}
}
public class Network {
private int num_in;
private int num_hid;
private int num_out;
private double[,] i_to_h_wts;
private double[,] h_to_o_wts;
private double[] inputs;
private double[] hidden;
private double[] outputs;
private double learningRate = 0.3;
private System.Random gen = new System.Random();
public static bool isTraining;
public delegate void ChangeHandler (System.Object sender, EventArgs nne);
public event ChangeHandler Change;
#region Constructor
public Network (int num_in,int num_hid, int num_out){
this.num_in = num_in;
this.num_hid = num_hid;
this.num_out = num_out;
i_to_h_wts = new double[num_in + 1, num_hid];
h_to_o_wts = new double[num_hid + 1, num_out];
inputs = new double[num_in + 1];
hidden = new double[num_hid + 1];
outputs = new double[num_out];
}
#endregion
public void initializeNetwork() {
inputs [num_in] = 1.0;
inputs [num_hid] = 1.0;
for (int i = 0; i < num_in + 1; i++) {
for (int j = 0; j < num_hid; j++) {
i_to_h_wts [i, j] = (gen.NextDouble () * 4) - 2;
}
}
for (int i = 0; i < num_hid +1; i++) {
for (int j = 0; j < num_out; j++) {
h_to_o_wts [i, j] = (gen.NextDouble () * 4) - 2;
}
}
}
public virtual void On_Change(NeuralNetworkEventArgs nne) {
if (Change != null) {
Change (this, nne);
}
}
public void pass_forward(double[] applied_inputs, double[] targOuts) {
for (int i = 0; i < num_in; i++) {
inputs [i] = applied_inputs [i];
}
for (int i = 0; i < num_hid; i++) {
double sum = 0.0;
for (int j = 0; j < num_in + 1; j++) {
sum += inputs [j] * i_to_h_wts [j, i];
}
hidden [i] = SigmoidActivationFunction.processValue (sum);
}
for (int i = 0; i < num_out; i++) {
double sum = 0.0;
for (int j = 0; j < num_hid + 1; j++) {
sum += hidden [j] * h_to_o_wts [j, i];
}
outputs [i] = SigmoidActivationFunction.processValue (sum);
NeuralNetworkEventArgs nne = new NeuralNetworkEventArgs (outputs, targOuts);
On_Change (nne);
}
}
#region Public Properties / Methods
/// <summary>
/// gets / sets the number of input nodes for the Neural Network
/// </summary>
public int NumberOfInputs
{
get { return num_in; }
set { num_in = value; }
}
/// <summary>
/// gets / sets the number of hidden nodes for the Neural Network
/// </summary>
public int NumberOfHidden
{
get { return num_hid; }
set { num_hid = value; }
}
/// <summary>
/// gets / sets the number of output nodes for the Neural Network
/// </summary>
public int NumberOfOutputs
{
get { return num_out; }
set { num_out = value; }
}
/// <summary>
/// gets / sets the input to hidden weights for the Neural Network
/// </summary>
public double[,] InputToHiddenWeights
{
get { return i_to_h_wts; }
set { i_to_h_wts = value; }
}
/// <summary>
/// gets / sets the hidden to output weights for the Neural Network
/// </summary>
public double[,] HiddenToOutputWeights
{
get { return h_to_o_wts; }
set { h_to_o_wts = value; }
}
/// <summary>
/// gets / sets the input values for the Neural Network
/// </summary>
public double[] Inputs
{
get { return inputs; }
set { inputs = value; }
}
/// <summary>
/// gets / sets the hidden values for the Neural Network
/// </summary>
public double[] Hidden
{
get { return hidden; }
set { hidden = value; }
}
/// <summary>
/// gets / sets the outputs values for the Neural Network
/// </summary>
public double[] Outputs
{
get { return outputs; }
set { outputs = value; }
}
/// <summary>
/// gets / sets the LearningRate (eta) value for the Neural Network
/// </summary>
public double LearningRate
{
get { return learningRate; }
set { learningRate = value; }
}
/// <summary>
/// Gets the error for this NeuralNetwork, based on targets - outputs
/// </summary>
/// <param name="targets">The target values, can be {0.0,1.0} or {1.0,0.0}</param>
/// <returns>the total error for this ANN based on targets - outputs</returns>
public double getError(double[] targets)
{
//storage for error
double error = 0.0;
//this calculation is based on something I read about weight space in
//Artificial Intellegence - A Modern Approach, 2nd edition.Prentice Hall
//2003. Stuart Rusell, Peter Norvig. Pg 741
error = Math.Sqrt(Math.Pow((targets[0] - outputs[0]), 2));
return error;
}
#endregion
}
public class NeuralNetworkEventArgs : EventArgs {
private double[] targOuts;
private double[] outputs;
public NeuralNetworkEventArgs(double[] outputs,double[] targOuts){
this.targOuts = targOuts;
this.outputs = outputs;
}
public double[] TargetOuts {
get { return targOuts; }
}
public double[] Outputs {
get { return outputs;}
}
}
public class SigmoidActivationFunction {
public static double processValue(double x) {
return 1.0 / (1.0 + Math.Pow (Math.E, -x));
}
}
}
和:
using System;
using System.Collections.Generic;
using System.Text;
using NeuralNetwork;
namespace GA_ANN_XOR
{
#region NN_Trainer_XOR CLASS
/// <summary>
/// Provides a GA trainer for a
/// <see cref="NeuralNetwork">NeuralNetwork</see> class
/// with 2 inputs, 2 hidden, and 1 output, which is trying
/// to approximate the XOR problem
/// </summary>
public class GA_Trainer_XOR
{
#region Instance fields
private Random gen = new Random(5);
private int training_times = 10000;
private double[,] train_set =
{{0, 0},
{0, 1},
{1,0},
{1,1}};
//population size
private int POPULATION = 15;
//ANN's
private Network[] networks;
//Mutation
private double MUTATION = 0.5;
//Recombination
private double RECOMBINE = 0.4;
//flag to detect when we hav found good ANN
private bool foundGoodANN = false;
//number of outputs
private int trainLoop = 0;
//best configuration index
private int bestConfiguration = -1;
//acceptable overall Neural Networ error
private double acceptableNNError = 0.1;
//events for gui, generated by the GA trainer
public delegate void GAChangeHandler(Object sender, TrainerEventArgs te);
public event GAChangeHandler GAChange;
public event EventHandler GATrainingDone;
//events for gui, generated by the NeuralNetwork, but propgated up to gui
//by the GA trainer, thats why they this event is here, the gui knows nothing
//about the array of NeuralNetworks, so the event must come through trainer
public delegate void ChangeHandler(Object sender, NeuralNetworkEventArgs nne);
public event ChangeHandler NNChange;
#endregion
#region Public Properties/Methods
/// <summary>
/// Performs a microbial GA (best of last breeding cycle stays in population)
/// on an array of <see cref="NeuralNetwork"> NeuralNetworks</see> in an attempt
/// to find a solution to the XOR logix problem. The training presents the entire
/// training set to a random pair of <see cref="NeuralNetwork"> NeuralNetworks,</see>
/// and evaluates which one does best. The winners genes, and some mutation are used
/// to shape the losers genes, in the hope that the new population will be moving
/// towards a closer solution.
/// </summary>
/// <param name="training_times">the number of times to carry out the
/// training loop</param>
/// <returns>The best <see cref="NeuralNetwork"> NeuralNetworks </see>
/// configuartion found</returns>
public Network doTraining(int training_times)
{
int a = 0;
int b = 0;
int WINNER = 0;
int LOSER = 0;
#region Training
//loop for the trainingPeriod
for (trainLoop = 0; trainLoop < training_times; trainLoop++)
{
//fire training loop event
TrainerEventArgs te = new TrainerEventArgs(trainLoop);
On_GAChange(te);
NeuralNetwork.isTraining = true;
//if the previous evaluation cyle, found a good ANN configuration
//quit the traning cycle, otherwise, let the breeding continue
if (foundGoodANN)
{
break;
}
//pick 2 ANN's at random, GA - SELECTION
a = (int)(gen.NextDouble() * POPULATION);
b = (int)(gen.NextDouble() * POPULATION);
//work out which was the WINNER and LOSER, GA - EVALUATION
if (evaluate(a) < evaluate(b))
{
WINNER = a;
LOSER = b;
}
else
{
WINNER = b;
LOSER = a;
}
////get the current value of the ANN weights
double[,] WINNER_i_to_h_wts = networks[WINNER].InputToHiddenWeights;
double[,] LOSER_i_to_h_wts = networks[LOSER].InputToHiddenWeights;
double[,] WINNER_h_to_o_wts = networks[WINNER].HiddenToOutputWeights;
double[,] LOSER_h_to_o_wts = networks[LOSER].HiddenToOutputWeights;
////i_to_h_wts RECOMBINATION LOOP
for (int k = 0; k < networks[WINNER].NumberOfInputs + 1; k++)
{
for (int l = 0; l < networks[WINNER].NumberOfHidden; l++)
{
//get genes from winner randomly for i_to_h_wts wieghts
if (gen.NextDouble() < RECOMBINE)
{
// set the weights to be that of the input weights from GA
LOSER_i_to_h_wts[k,l] = WINNER_i_to_h_wts[k,l];
}
}
}
//h_to_o_wts RECOMBINATION LOOP
for (int k = 0; k < networks[WINNER].NumberOfHidden + 1; k++)
{
for (int l = 0; l < networks[WINNER].NumberOfOutputs; l++)
{
//get genes from winner randomly for i_to_h_wts wieghts
if (gen.NextDouble() < RECOMBINE)
{
// set the weights to be that of the input weights from GA
LOSER_h_to_o_wts[k,l] = WINNER_h_to_o_wts[k,l];
}
}
}
//i_to_h_wts MUTATION LOOP
for (int k = 0; k < networks[WINNER].NumberOfInputs + 1; k++)
{
for (int l = 0; l < networks[WINNER].NumberOfHidden; l++)
{
//add some mutation randomly
if (gen.NextDouble() < MUTATION)
{
LOSER_i_to_h_wts[k,l] += ((gen.NextDouble() * 0.2) - 0.1);
}
}
}
//h_to_o_wts MUTATION LOOP
for (int k = 0; k < networks[WINNER].NumberOfHidden + 1; k++)
{
for (int l = 0; l < networks[WINNER].NumberOfOutputs; l++)
{
//add some mutation randomly
if (gen.NextDouble() < MUTATION)
{
LOSER_h_to_o_wts[k,l] += ((gen.NextDouble() * 0.2) - 0.1);
}
}
}
//update the losers i_to_h_wts genotype
networks[LOSER].InputToHiddenWeights = LOSER_i_to_h_wts;
//update the losers i_to_h_wts genotype
networks[LOSER].HiddenToOutputWeights = LOSER_h_to_o_wts;
}
#endregion
//AT THIS POINT ITS EITHER THE END OF TRAINING OR WE HAVE
//FOUND AN ACCEPTABLE ANN, WHICH IS BELOW THE VALUE
//tell gui that training is now done
On_GATrainingDone(new EventArgs());
NeuralNetwork.isTraining = false;
//check to see if there was a best configuration found, may not have done
//enough training to find a good NeuralNetwork configuration, so will simply
//have to return the WINNER
if (bestConfiguration == -1)
{
bestConfiguration = WINNER;
}
//return the best Neural network
return networks[bestConfiguration];
}
/// <summary>
/// Is called after the initial training is completed.
/// Sipmly presents 1 complete set of the training set to
/// the trained network, which should hopefully get it pretty
/// correct now its trained
/// </summary>
public void doActualRun()
{
//loop through the entire training set
for (int i = 0; i <= train_set.GetUpperBound(0); i++)
{
//forward these new values through network
//forward weights through ANN
forwardWeights(bestConfiguration, getTrainSet(i));
double[] targetValues = getTargetValues(getTrainSet(i));
}
}
#endregion
#region Constructor
/// <summary>
/// Constructs a new GA_Trainer_XOR. The constructor creates
/// the population of <see cref="NeuralNetwork">NeuralNetworks</see>
/// and also wires up the underlying <see cref="NeuralNetwork">
/// NeuralNetworks</see> events, to a new GA event, such that the
/// <see cref="NeuralNetwork">NeuralNetworks</see> event can be
/// propogated to the gui
/// </summary>
public GA_Trainer_XOR()
{
networks = new Network[POPULATION];
//create new ANN objects, random weights applied at start
for (int i = 0; i <= networks.GetUpperBound(0); i++)
{
networks[i] = new Network(2, 2, 1);
networks[i].Change += new Network.ChangeHandler(GA_Trainer_NN_Change);
}
}
#endregion
#region Events
/// <summary>
/// Raises the GA TrainingDone event
/// </summary>
/// <param name="te">The TrainerEventArgs</param>
public virtual void On_GATrainingDone(EventArgs ea)
{
if (GATrainingDone != null)
{
// Invokes the delegates.
GATrainingDone(this, ea);
}
}
/// <summary>
/// Raises the GA Change event
/// </summary>
/// <param name="te">The TrainerEventArgs</param>
public virtual void On_GAChange(TrainerEventArgs te)
{
if (GAChange != null)
{
// Invokes the delegates.
GAChange(this, te);
}
}
/// <summary>
/// Raises the NeuralNetwork Change event, simply propogates
/// original <see cref="NeuralNetwork">NeuralNetwork</see>
/// event up to the GUI
/// </summary>
/// <param name="nne">The NeuralNetworkEventArgs</param>
public virtual void On_NNChange(NeuralNetworkEventArgs nne)
{
if (NNChange != null)
{
// Invokes the delegates.
NNChange(this, nne);
}
}
#endregion
#region Private Methods
/// <summary>
/// Evaluates a member of the population (of <see cref="NeuralNetwork">
/// NeuralNetworks</see>
/// </summary>
/// <param name="popMember">The member of the population to evaluate</param>
/// <returns>An overall error value for this population member, which is
/// the result of applying the complete training set to the population
/// member, with its current weight configuration</returns>
private double evaluate(int popMember)
{
double error = 0.0;
//loop through the entire training set
for (int i = 0; i <= train_set.GetUpperBound(0); i++)
{
//forward these new values through network
//forward weights through ANN
forwardWeights(popMember, getTrainSet(i));
double[] targetValues = getTargetValues(getTrainSet(i));
error += networks[popMember].getError(targetValues);
}
//if the Error term is < acceptableNNError value we have found
//a good configuration of weights for teh NeuralNetwork, so tell
//GA to stop looking
if (error < acceptableNNError)
{
bestConfiguration = popMember;
foundGoodANN = true;
}
//return error
return error;
}
/// <summary>
/// This event is simply here to propogate the underlying
/// <see cref="NeuralNetwork">NeuralNetworks</see> Change
/// event, to the gui. The gui has no visibility of the
/// array of <see cref="NeuralNetwork">NeuralNetworks</see>
/// so this trainer class propogates the events from the
/// <see cref="NeuralNetwork">NeuralNetworks</see> to the gui
/// </summary>
/// <param name="sender">The orginal <see cref="NeuralNetwork">NeuralNetwork</see>
/// that changed</param>
/// <param name="nne">The NeuralNetworkEventArgs</param>
private void GA_Trainer_NN_Change(object sender, NeuralNetworkEventArgs nne)
{
On_NNChange(nne);
}
/// <summary>
/// Returns the array within the 2D train_set array as the index
/// specfied by the idx input parameter
/// </summary>
/// <param name="idx">The index into the 2d array to get</param>
/// <returns>The array within the 2D train_set array as the index
/// specfied by the idx input parameter</returns>
private double[] getTrainSet(int idx)
{
//NOTE :
//
//If anyone can tell me how to return an array at index idx from
//a 2D array, which is holding arrays of arrays I would like that
//very much.
//I thought it would be
//double[] trainValues= (double[])train_set.GetValue(0);
//but this didn't work, so am doing it like this
double[] trainValues = { train_set[idx, 0], train_set[idx, 1] };
return trainValues;
}
/// <summary>
/// Forwards the weights from the input->hidden and also from
/// the hidden->output nodes, for the trainingSet
/// </summary>
/// <param name="popMember">The population member</param>
/// <param name="trainingSet">The training set to present to the
/// <see cref="NeuralNetwork"/>NeuralNetwork</param>
private void forwardWeights(int popMember, double[] trainingSet)
{
//forward weights through ANN
networks[popMember].pass_forward(trainingSet,getTargetValues(trainingSet));
}
/// <summary>
/// Returns a double which represents the output for the
/// current set of inputs.
/// In the cases where the summed inputs = 1, then target
/// should be 1.0, otherwise it should be 0.0.
/// This is only for the XOR problem, but this is a trainer
/// for the XOR problem, so this is fine.
/// </summary>
/// <param name="currSet">The current set of inputs</param>
/// <returns>A double which represents the output for the
/// current set of inputs</returns>
private double[] getTargetValues(double[] currSet)
{
//the current value of the training set
double valOfSet = 0;
double[] targs = new double[1];
for (int i = 0; i < currSet.Length; i++)
{
valOfSet += currSet[i];
}
//in the cases where the summed inputs = 1, then target
//should be 1.0, otherwise it should be 0.0
targs[0] = valOfSet == 1 ? 1.0 : 0.0;
return targs;
}
#endregion
}
#endregion
#region TrainerEventArgs CLASS
/// <summary>
/// Provides the event argumets for the
/// <see cref="GA_Trainer_XOR">trainer</see> class
/// </summary>
public class TrainerEventArgs : EventArgs
{
#region Instance Fields
//Instance fields
private int trainLoop = 0;
#endregion
#region Public Constructor
/// <summary>
/// Constructs a new TrainerEventArgs object using the parameters provided
/// </summary>
/// <param name="trainLoop">The current training loop</param>
public TrainerEventArgs(int trainLoop)
{
this.trainLoop = trainLoop;
}
#endregion
#region Public Methods/Properties
/// <summary>
/// gets the training loop number
/// </summary>
public int TrainingLoop
{
get { return trainLoop; }
}
#endregion
}
#endregion
}
这是错误代码:
Assets/Scripts/System/NeuralNetwork/Trainer.cs(238,102): error CS0123: A method or delegate `GA_ANN_XOR.GA_Trainer_XOR.GA_Trainer_NN_Change(object, NeuralNetwork.NeuralNetworkEventArgs)' parameters do not match delegate `NeuralNetwork.Network.ChangeHandler(object, System.EventArgs)' parameters
解决这个问题的一个简单方法是改变这个:
public delegate void ChangeHandler (System.Object sender, EventArgs nne);
对此:
public delegate void ChangeHandler (System.Object sender, NeuralNetworkEventArgs nne);
这解决了问题。
我正在为 Google 科学博览会创建一个 AI 系统,但我遇到了困难,我似乎找不到标题中所述问题的错误。在以下主题中搜索 Google returns 个空答案。我正在使用 Monodevelop;
这是我的代码:
using UnityEngine;
using System;
using System.Collections;
using System.Collections.Generic;
using System.ComponentModel;
using System.ComponentModel.Design;
namespace NeuralNetwork {
public class DecisionMaking {
public static string DecideString(List<string> choice){
choice.ToArray ();
int mychoice = UnityEngine.Random.Range (0, choice.Count);
return choice [mychoice];
}
public static Vector3 DecideVector(List<Vector3> choice){
choice.ToArray ();
int mychoice = UnityEngine.Random.Range (0, choice.Count);
return choice [mychoice];
}
}
public class Network {
private int num_in;
private int num_hid;
private int num_out;
private double[,] i_to_h_wts;
private double[,] h_to_o_wts;
private double[] inputs;
private double[] hidden;
private double[] outputs;
private double learningRate = 0.3;
private System.Random gen = new System.Random();
public static bool isTraining;
public delegate void ChangeHandler (System.Object sender, EventArgs nne);
public event ChangeHandler Change;
#region Constructor
public Network (int num_in,int num_hid, int num_out){
this.num_in = num_in;
this.num_hid = num_hid;
this.num_out = num_out;
i_to_h_wts = new double[num_in + 1, num_hid];
h_to_o_wts = new double[num_hid + 1, num_out];
inputs = new double[num_in + 1];
hidden = new double[num_hid + 1];
outputs = new double[num_out];
}
#endregion
public void initializeNetwork() {
inputs [num_in] = 1.0;
inputs [num_hid] = 1.0;
for (int i = 0; i < num_in + 1; i++) {
for (int j = 0; j < num_hid; j++) {
i_to_h_wts [i, j] = (gen.NextDouble () * 4) - 2;
}
}
for (int i = 0; i < num_hid +1; i++) {
for (int j = 0; j < num_out; j++) {
h_to_o_wts [i, j] = (gen.NextDouble () * 4) - 2;
}
}
}
public virtual void On_Change(NeuralNetworkEventArgs nne) {
if (Change != null) {
Change (this, nne);
}
}
public void pass_forward(double[] applied_inputs, double[] targOuts) {
for (int i = 0; i < num_in; i++) {
inputs [i] = applied_inputs [i];
}
for (int i = 0; i < num_hid; i++) {
double sum = 0.0;
for (int j = 0; j < num_in + 1; j++) {
sum += inputs [j] * i_to_h_wts [j, i];
}
hidden [i] = SigmoidActivationFunction.processValue (sum);
}
for (int i = 0; i < num_out; i++) {
double sum = 0.0;
for (int j = 0; j < num_hid + 1; j++) {
sum += hidden [j] * h_to_o_wts [j, i];
}
outputs [i] = SigmoidActivationFunction.processValue (sum);
NeuralNetworkEventArgs nne = new NeuralNetworkEventArgs (outputs, targOuts);
On_Change (nne);
}
}
#region Public Properties / Methods
/// <summary>
/// gets / sets the number of input nodes for the Neural Network
/// </summary>
public int NumberOfInputs
{
get { return num_in; }
set { num_in = value; }
}
/// <summary>
/// gets / sets the number of hidden nodes for the Neural Network
/// </summary>
public int NumberOfHidden
{
get { return num_hid; }
set { num_hid = value; }
}
/// <summary>
/// gets / sets the number of output nodes for the Neural Network
/// </summary>
public int NumberOfOutputs
{
get { return num_out; }
set { num_out = value; }
}
/// <summary>
/// gets / sets the input to hidden weights for the Neural Network
/// </summary>
public double[,] InputToHiddenWeights
{
get { return i_to_h_wts; }
set { i_to_h_wts = value; }
}
/// <summary>
/// gets / sets the hidden to output weights for the Neural Network
/// </summary>
public double[,] HiddenToOutputWeights
{
get { return h_to_o_wts; }
set { h_to_o_wts = value; }
}
/// <summary>
/// gets / sets the input values for the Neural Network
/// </summary>
public double[] Inputs
{
get { return inputs; }
set { inputs = value; }
}
/// <summary>
/// gets / sets the hidden values for the Neural Network
/// </summary>
public double[] Hidden
{
get { return hidden; }
set { hidden = value; }
}
/// <summary>
/// gets / sets the outputs values for the Neural Network
/// </summary>
public double[] Outputs
{
get { return outputs; }
set { outputs = value; }
}
/// <summary>
/// gets / sets the LearningRate (eta) value for the Neural Network
/// </summary>
public double LearningRate
{
get { return learningRate; }
set { learningRate = value; }
}
/// <summary>
/// Gets the error for this NeuralNetwork, based on targets - outputs
/// </summary>
/// <param name="targets">The target values, can be {0.0,1.0} or {1.0,0.0}</param>
/// <returns>the total error for this ANN based on targets - outputs</returns>
public double getError(double[] targets)
{
//storage for error
double error = 0.0;
//this calculation is based on something I read about weight space in
//Artificial Intellegence - A Modern Approach, 2nd edition.Prentice Hall
//2003. Stuart Rusell, Peter Norvig. Pg 741
error = Math.Sqrt(Math.Pow((targets[0] - outputs[0]), 2));
return error;
}
#endregion
}
public class NeuralNetworkEventArgs : EventArgs {
private double[] targOuts;
private double[] outputs;
public NeuralNetworkEventArgs(double[] outputs,double[] targOuts){
this.targOuts = targOuts;
this.outputs = outputs;
}
public double[] TargetOuts {
get { return targOuts; }
}
public double[] Outputs {
get { return outputs;}
}
}
public class SigmoidActivationFunction {
public static double processValue(double x) {
return 1.0 / (1.0 + Math.Pow (Math.E, -x));
}
}
}
和:
using System;
using System.Collections.Generic;
using System.Text;
using NeuralNetwork;
namespace GA_ANN_XOR
{
#region NN_Trainer_XOR CLASS
/// <summary>
/// Provides a GA trainer for a
/// <see cref="NeuralNetwork">NeuralNetwork</see> class
/// with 2 inputs, 2 hidden, and 1 output, which is trying
/// to approximate the XOR problem
/// </summary>
public class GA_Trainer_XOR
{
#region Instance fields
private Random gen = new Random(5);
private int training_times = 10000;
private double[,] train_set =
{{0, 0},
{0, 1},
{1,0},
{1,1}};
//population size
private int POPULATION = 15;
//ANN's
private Network[] networks;
//Mutation
private double MUTATION = 0.5;
//Recombination
private double RECOMBINE = 0.4;
//flag to detect when we hav found good ANN
private bool foundGoodANN = false;
//number of outputs
private int trainLoop = 0;
//best configuration index
private int bestConfiguration = -1;
//acceptable overall Neural Networ error
private double acceptableNNError = 0.1;
//events for gui, generated by the GA trainer
public delegate void GAChangeHandler(Object sender, TrainerEventArgs te);
public event GAChangeHandler GAChange;
public event EventHandler GATrainingDone;
//events for gui, generated by the NeuralNetwork, but propgated up to gui
//by the GA trainer, thats why they this event is here, the gui knows nothing
//about the array of NeuralNetworks, so the event must come through trainer
public delegate void ChangeHandler(Object sender, NeuralNetworkEventArgs nne);
public event ChangeHandler NNChange;
#endregion
#region Public Properties/Methods
/// <summary>
/// Performs a microbial GA (best of last breeding cycle stays in population)
/// on an array of <see cref="NeuralNetwork"> NeuralNetworks</see> in an attempt
/// to find a solution to the XOR logix problem. The training presents the entire
/// training set to a random pair of <see cref="NeuralNetwork"> NeuralNetworks,</see>
/// and evaluates which one does best. The winners genes, and some mutation are used
/// to shape the losers genes, in the hope that the new population will be moving
/// towards a closer solution.
/// </summary>
/// <param name="training_times">the number of times to carry out the
/// training loop</param>
/// <returns>The best <see cref="NeuralNetwork"> NeuralNetworks </see>
/// configuartion found</returns>
public Network doTraining(int training_times)
{
int a = 0;
int b = 0;
int WINNER = 0;
int LOSER = 0;
#region Training
//loop for the trainingPeriod
for (trainLoop = 0; trainLoop < training_times; trainLoop++)
{
//fire training loop event
TrainerEventArgs te = new TrainerEventArgs(trainLoop);
On_GAChange(te);
NeuralNetwork.isTraining = true;
//if the previous evaluation cyle, found a good ANN configuration
//quit the traning cycle, otherwise, let the breeding continue
if (foundGoodANN)
{
break;
}
//pick 2 ANN's at random, GA - SELECTION
a = (int)(gen.NextDouble() * POPULATION);
b = (int)(gen.NextDouble() * POPULATION);
//work out which was the WINNER and LOSER, GA - EVALUATION
if (evaluate(a) < evaluate(b))
{
WINNER = a;
LOSER = b;
}
else
{
WINNER = b;
LOSER = a;
}
////get the current value of the ANN weights
double[,] WINNER_i_to_h_wts = networks[WINNER].InputToHiddenWeights;
double[,] LOSER_i_to_h_wts = networks[LOSER].InputToHiddenWeights;
double[,] WINNER_h_to_o_wts = networks[WINNER].HiddenToOutputWeights;
double[,] LOSER_h_to_o_wts = networks[LOSER].HiddenToOutputWeights;
////i_to_h_wts RECOMBINATION LOOP
for (int k = 0; k < networks[WINNER].NumberOfInputs + 1; k++)
{
for (int l = 0; l < networks[WINNER].NumberOfHidden; l++)
{
//get genes from winner randomly for i_to_h_wts wieghts
if (gen.NextDouble() < RECOMBINE)
{
// set the weights to be that of the input weights from GA
LOSER_i_to_h_wts[k,l] = WINNER_i_to_h_wts[k,l];
}
}
}
//h_to_o_wts RECOMBINATION LOOP
for (int k = 0; k < networks[WINNER].NumberOfHidden + 1; k++)
{
for (int l = 0; l < networks[WINNER].NumberOfOutputs; l++)
{
//get genes from winner randomly for i_to_h_wts wieghts
if (gen.NextDouble() < RECOMBINE)
{
// set the weights to be that of the input weights from GA
LOSER_h_to_o_wts[k,l] = WINNER_h_to_o_wts[k,l];
}
}
}
//i_to_h_wts MUTATION LOOP
for (int k = 0; k < networks[WINNER].NumberOfInputs + 1; k++)
{
for (int l = 0; l < networks[WINNER].NumberOfHidden; l++)
{
//add some mutation randomly
if (gen.NextDouble() < MUTATION)
{
LOSER_i_to_h_wts[k,l] += ((gen.NextDouble() * 0.2) - 0.1);
}
}
}
//h_to_o_wts MUTATION LOOP
for (int k = 0; k < networks[WINNER].NumberOfHidden + 1; k++)
{
for (int l = 0; l < networks[WINNER].NumberOfOutputs; l++)
{
//add some mutation randomly
if (gen.NextDouble() < MUTATION)
{
LOSER_h_to_o_wts[k,l] += ((gen.NextDouble() * 0.2) - 0.1);
}
}
}
//update the losers i_to_h_wts genotype
networks[LOSER].InputToHiddenWeights = LOSER_i_to_h_wts;
//update the losers i_to_h_wts genotype
networks[LOSER].HiddenToOutputWeights = LOSER_h_to_o_wts;
}
#endregion
//AT THIS POINT ITS EITHER THE END OF TRAINING OR WE HAVE
//FOUND AN ACCEPTABLE ANN, WHICH IS BELOW THE VALUE
//tell gui that training is now done
On_GATrainingDone(new EventArgs());
NeuralNetwork.isTraining = false;
//check to see if there was a best configuration found, may not have done
//enough training to find a good NeuralNetwork configuration, so will simply
//have to return the WINNER
if (bestConfiguration == -1)
{
bestConfiguration = WINNER;
}
//return the best Neural network
return networks[bestConfiguration];
}
/// <summary>
/// Is called after the initial training is completed.
/// Sipmly presents 1 complete set of the training set to
/// the trained network, which should hopefully get it pretty
/// correct now its trained
/// </summary>
public void doActualRun()
{
//loop through the entire training set
for (int i = 0; i <= train_set.GetUpperBound(0); i++)
{
//forward these new values through network
//forward weights through ANN
forwardWeights(bestConfiguration, getTrainSet(i));
double[] targetValues = getTargetValues(getTrainSet(i));
}
}
#endregion
#region Constructor
/// <summary>
/// Constructs a new GA_Trainer_XOR. The constructor creates
/// the population of <see cref="NeuralNetwork">NeuralNetworks</see>
/// and also wires up the underlying <see cref="NeuralNetwork">
/// NeuralNetworks</see> events, to a new GA event, such that the
/// <see cref="NeuralNetwork">NeuralNetworks</see> event can be
/// propogated to the gui
/// </summary>
public GA_Trainer_XOR()
{
networks = new Network[POPULATION];
//create new ANN objects, random weights applied at start
for (int i = 0; i <= networks.GetUpperBound(0); i++)
{
networks[i] = new Network(2, 2, 1);
networks[i].Change += new Network.ChangeHandler(GA_Trainer_NN_Change);
}
}
#endregion
#region Events
/// <summary>
/// Raises the GA TrainingDone event
/// </summary>
/// <param name="te">The TrainerEventArgs</param>
public virtual void On_GATrainingDone(EventArgs ea)
{
if (GATrainingDone != null)
{
// Invokes the delegates.
GATrainingDone(this, ea);
}
}
/// <summary>
/// Raises the GA Change event
/// </summary>
/// <param name="te">The TrainerEventArgs</param>
public virtual void On_GAChange(TrainerEventArgs te)
{
if (GAChange != null)
{
// Invokes the delegates.
GAChange(this, te);
}
}
/// <summary>
/// Raises the NeuralNetwork Change event, simply propogates
/// original <see cref="NeuralNetwork">NeuralNetwork</see>
/// event up to the GUI
/// </summary>
/// <param name="nne">The NeuralNetworkEventArgs</param>
public virtual void On_NNChange(NeuralNetworkEventArgs nne)
{
if (NNChange != null)
{
// Invokes the delegates.
NNChange(this, nne);
}
}
#endregion
#region Private Methods
/// <summary>
/// Evaluates a member of the population (of <see cref="NeuralNetwork">
/// NeuralNetworks</see>
/// </summary>
/// <param name="popMember">The member of the population to evaluate</param>
/// <returns>An overall error value for this population member, which is
/// the result of applying the complete training set to the population
/// member, with its current weight configuration</returns>
private double evaluate(int popMember)
{
double error = 0.0;
//loop through the entire training set
for (int i = 0; i <= train_set.GetUpperBound(0); i++)
{
//forward these new values through network
//forward weights through ANN
forwardWeights(popMember, getTrainSet(i));
double[] targetValues = getTargetValues(getTrainSet(i));
error += networks[popMember].getError(targetValues);
}
//if the Error term is < acceptableNNError value we have found
//a good configuration of weights for teh NeuralNetwork, so tell
//GA to stop looking
if (error < acceptableNNError)
{
bestConfiguration = popMember;
foundGoodANN = true;
}
//return error
return error;
}
/// <summary>
/// This event is simply here to propogate the underlying
/// <see cref="NeuralNetwork">NeuralNetworks</see> Change
/// event, to the gui. The gui has no visibility of the
/// array of <see cref="NeuralNetwork">NeuralNetworks</see>
/// so this trainer class propogates the events from the
/// <see cref="NeuralNetwork">NeuralNetworks</see> to the gui
/// </summary>
/// <param name="sender">The orginal <see cref="NeuralNetwork">NeuralNetwork</see>
/// that changed</param>
/// <param name="nne">The NeuralNetworkEventArgs</param>
private void GA_Trainer_NN_Change(object sender, NeuralNetworkEventArgs nne)
{
On_NNChange(nne);
}
/// <summary>
/// Returns the array within the 2D train_set array as the index
/// specfied by the idx input parameter
/// </summary>
/// <param name="idx">The index into the 2d array to get</param>
/// <returns>The array within the 2D train_set array as the index
/// specfied by the idx input parameter</returns>
private double[] getTrainSet(int idx)
{
//NOTE :
//
//If anyone can tell me how to return an array at index idx from
//a 2D array, which is holding arrays of arrays I would like that
//very much.
//I thought it would be
//double[] trainValues= (double[])train_set.GetValue(0);
//but this didn't work, so am doing it like this
double[] trainValues = { train_set[idx, 0], train_set[idx, 1] };
return trainValues;
}
/// <summary>
/// Forwards the weights from the input->hidden and also from
/// the hidden->output nodes, for the trainingSet
/// </summary>
/// <param name="popMember">The population member</param>
/// <param name="trainingSet">The training set to present to the
/// <see cref="NeuralNetwork"/>NeuralNetwork</param>
private void forwardWeights(int popMember, double[] trainingSet)
{
//forward weights through ANN
networks[popMember].pass_forward(trainingSet,getTargetValues(trainingSet));
}
/// <summary>
/// Returns a double which represents the output for the
/// current set of inputs.
/// In the cases where the summed inputs = 1, then target
/// should be 1.0, otherwise it should be 0.0.
/// This is only for the XOR problem, but this is a trainer
/// for the XOR problem, so this is fine.
/// </summary>
/// <param name="currSet">The current set of inputs</param>
/// <returns>A double which represents the output for the
/// current set of inputs</returns>
private double[] getTargetValues(double[] currSet)
{
//the current value of the training set
double valOfSet = 0;
double[] targs = new double[1];
for (int i = 0; i < currSet.Length; i++)
{
valOfSet += currSet[i];
}
//in the cases where the summed inputs = 1, then target
//should be 1.0, otherwise it should be 0.0
targs[0] = valOfSet == 1 ? 1.0 : 0.0;
return targs;
}
#endregion
}
#endregion
#region TrainerEventArgs CLASS
/// <summary>
/// Provides the event argumets for the
/// <see cref="GA_Trainer_XOR">trainer</see> class
/// </summary>
public class TrainerEventArgs : EventArgs
{
#region Instance Fields
//Instance fields
private int trainLoop = 0;
#endregion
#region Public Constructor
/// <summary>
/// Constructs a new TrainerEventArgs object using the parameters provided
/// </summary>
/// <param name="trainLoop">The current training loop</param>
public TrainerEventArgs(int trainLoop)
{
this.trainLoop = trainLoop;
}
#endregion
#region Public Methods/Properties
/// <summary>
/// gets the training loop number
/// </summary>
public int TrainingLoop
{
get { return trainLoop; }
}
#endregion
}
#endregion
}
这是错误代码:
Assets/Scripts/System/NeuralNetwork/Trainer.cs(238,102): error CS0123: A method or delegate `GA_ANN_XOR.GA_Trainer_XOR.GA_Trainer_NN_Change(object, NeuralNetwork.NeuralNetworkEventArgs)' parameters do not match delegate `NeuralNetwork.Network.ChangeHandler(object, System.EventArgs)' parameters
解决这个问题的一个简单方法是改变这个:
public delegate void ChangeHandler (System.Object sender, EventArgs nne);
对此:
public delegate void ChangeHandler (System.Object sender, NeuralNetworkEventArgs nne);
这解决了问题。