Spark MLlib 决策树:按特征分类的概率?

Spark MLib Decision Trees: Probability of labels by features?

我可以设法显示我的 labels 的总概率,例如在显示我的决策树后,我有一个 table :

Total Predictions :
    65% impressions
    30% clicks
    5%  conversions

但我的问题是通过features(按节点)找到概率(或计数),例如:

if feature1 > 5
   if feature2 < 10
      Predict Impressions
      samples : 30 Impressions
   else feature2 >= 10
      Predict Clicks
      samples : 5 Clicks

Scikit 自动执行,我正在尝试找到一种方法来使用 Spark

注意:以下解决方案仅适用于 Scala。我在 Python.

中没有找到方法

假设您只想要树的可视化表示,如您的示例所示,也许一个选择是调整 Spark GitHub 上 Node.scala 代码中存在的方法 subtreeToString 以包括每个节点拆分的概率,如以下代码段所示:

def subtreeToString(rootNode: Node, indentFactor: Int = 0): String = {
  def splitToString(split: Split, left: Boolean): String = {
    split.featureType match {
      case Continuous => if (left) {
        s"(feature ${split.feature} <= ${split.threshold})"
      } else {
        s"(feature ${split.feature} > ${split.threshold})"
      }
      case Categorical => if (left) {
        s"(feature ${split.feature} in ${split.categories.mkString("{", ",", "}")})"
      } else {
        s"(feature ${split.feature} not in ${split.categories.mkString("{", ",", "}")})"
      }
    }
  }
  val prefix: String = " " * indentFactor
  if (rootNode.isLeaf) {
    prefix + s"Predict: ${rootNode.predict.predict} \n"
  } else {
    val prob = rootNode.predict.prob*100D
    prefix + s"If ${splitToString(rootNode.split.get, left = true)} " + f"(Prob: $prob%04.2f %%)" + "\n" +
      subtreeToString(rootNode.leftNode.get, indentFactor + 1) +
      prefix + s"Else ${splitToString(rootNode.split.get, left = false)} " + f"(Prob: ${100-prob}%04.2f %%)" + "\n" +
      subtreeToString(rootNode.rightNode.get, indentFactor + 1)
  }
}

我在 Iris dataset 上 运行 的模型上进行了测试,结果如下:

scala> println(subtreeToString(model.topNode))

If (feature 2 <= -0.762712) (Prob: 35.35 %)
 Predict: 1.0
Else (feature 2 > -0.762712) (Prob: 64.65 %)
 If (feature 3 <= 0.333333) (Prob: 52.24 %)
  If (feature 0 <= -0.666667) (Prob: 92.11 %)
   Predict: 3.0
  Else (feature 0 > -0.666667) (Prob: 7.89 %)
   If (feature 2 <= 0.322034) (Prob: 94.59 %)
    Predict: 2.0
   Else (feature 2 > 0.322034) (Prob: 5.41 %)
    If (feature 3 <= 0.166667) (Prob: 50.00 %)
     Predict: 3.0
    Else (feature 3 > 0.166667) (Prob: 50.00 %)
     Predict: 2.0
 Else (feature 3 > 0.333333) (Prob: 47.76 %)
  Predict: 3.0

可以使用类似的方法使用此信息创建树结构。主要区别在于将打印信息(split.featuresplit.thresholdpredict.prob 等)存储为 val 并使用它们构建结构。