Apache Spark-SQL 与 Sqoop 基准测试,同时将数据从 RDBMS 传输到 hdfs

Apache Spark-SQL vs Sqoop benchmarking while transferring data from RDBMS to hdfs

我正在处理一个必须将数据从 RDBMS 传输到 HDFS 的用例。我们已经使用 sqoop 完成了这个案例的基准测试,发现我们能够在 6-7 分钟内传输大约 20GB 的数据。

当我尝试使用 Spark SQL 时,性能非常低(1 Gb 的记录从 netezza 传输到 hdfs 需要 4 分钟)。我正在尝试进行一些调整并提高其性能,但不太可能将其调整到 sqoop 的水平(1 分钟内大约 3 Gb 的数据)。

我同意 spark 主要是一个处理引擎这一事实,但我的主要问题是 spark 和 sqoop 都在内部使用 JDBC 驱动程序,所以为什么性能差异如此之大(或者可能是我错过了一些东西)。我正在 post 编写我的代码。

object helloWorld {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("Netezza_Connection").setMaster("local")
    val sc= new SparkContext(conf)
    val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc)
    sqlContext.read.format("jdbc").option("url","jdbc:netezza://hostname:port/dbname").option("dbtable","POC_TEST").option("user","user").option("password","password").option("driver","org.netezza.Driver").option("numPartitions","14").option("lowerBound","0").option("upperBound","13").option("partitionColumn", "id").option("fetchSize","100000").load().registerTempTable("POC")
    val df2 =sqlContext.sql("select * from POC")
    val partitioner= new org.apache.spark.HashPartitioner(14)
    val rdd=df2.rdd.map(x=>(String.valueOf(x.get(1)),x)).partitionBy(partitioner).values
    rdd.saveAsTextFile("hdfs://Hostname/test")
  }
}

我已经检查了许多其他 post 但无法得到关于 sqoop 的内部工作和调整的明确答案,也没有得到 sqoop vs spark sql 基准测试。请帮助理解这个问题。

您可以尝试以下方法:-

  1. 从 netezza 读取数据,没有任何分区,并且 fetch_size 增加到一百万。

    sqlContext.read.format("jdbc").option("url","jdbc:netezza://hostname:port/dbname").option("dbtable","POC_TEST").option("user","user").option("password","password").option("driver","org.netezza.Driver").option("fetchSize","1000000").load().registerTempTable("POC")
    
  2. 在将数据写入最终文件之前对其进行重新分区。

    val df3 = df2.repartition(10) //to reduce the shuffle 
    
  3. ORC 格式比 TEXT 格式更优化。将最终输出写入 parquet/ORC.

    df3.write.format("ORC").save("hdfs://Hostname/test")
    

您在工作中使用了错误的工具。

Sqoop 将启动一系列进程(在数据节点上),每个进程都将连接到您的数据库(参见 num-mapper),并且每个进程都将提取数据集的一部分。我认为您无法使用 Spark 实现某种读取并行性。

用Sqoop获取数据集,然后用Spark处理。

@amitabh 虽然标记为答案,但我不同意。

一旦您在从 jdbc 读取数据时给出谓词对数据进行分区,spark 将 运行 为每个分区分离任务。在你的情况下,没有任务应该是 14(你可以使用 spark UI 来确认)。

我注意到您正在使用 local 作为 master,这只会为执行程序提供 1 个核心。因此不会有并行性。这就是你的情况。

现在要获得与 sqoop 相同的吞吐量,您需要确保这些任务 运行 是并行的。从理论上讲,这可以通过以下方式之一完成: 1.使用14个执行器,每个执行器1个核心 2. 使用 1 个 14 核执行器(频谱的另一端)

通常,我会为每个执行程序配备 4-5 个核心。因此,我使用 15/5= 3 个执行程序测试性能(我将 1 添加到 14 以考虑在集群模式下为驱动程序 运行ning 提供 1 个核心)。 使用:executor.cores、executor.instances in sparkConf.set 玩配置。

如果这没有显着提高性能,接下来就是查看执行程序内存。

最后,我会调整应用程序逻辑以查看 mapRDD 大小、分区大小和随机播放大小。

以下解决方案对我有帮助

var df=spark.read.format("jdbc").option("url","
"url").option("user","user").option("password","password").option("dbTable","dbTable").option("fetchSize","10000").load()
df.registerTempTable("tempTable")
var dfRepart=spark.sql("select * from tempTable distribute by primary_key") //this will repartition the data evenly

dfRepart.write.format("parquet").save("hdfs_location")

我遇到了同样的问题,因为您正在使用的代码片段不适用于分区。

sqlContext.read.format("jdbc").option("url","jdbc:netezza://hostname:port/dbname").option("dbtable","POC_TEST").option("user","user").option("password","password").option("driver","org.netezza.Driver").option("numPartitions","14").option("lowerBound","0").option("upperBound","13").option("partitionColumn", "id").option("fetchSize","100000").load().registerTempTable("POC")

您可以通过

检查在您的 spark 作业中创建的分区数
df.rdd.partitions.length

您可以使用以下代码连接数据库:

sqlContext.read.jdbc(url=db_url,
    table=tableName,
    columnName="ID",
    lowerBound=1L,
    upperBound=100000L,
    numPartitions=numPartitions,
    connectionProperties=connectionProperties) 

要优化您的 Spark 作业,请使用以下参数: 1. 分区数 2.--num-executors 3.--executor-cores 4.--executor-memory 5.--driver-memory 6.fetch-size

2、3、4 和 5 选项取决于您的集群配置 您可以在 spark ui 上监控您的 spark 作业。

Sqoop 和 Spark SQL 都使用 JDBC 连接从 RDBMS 引擎获取数据,但 Sqoop 在这方面有优势,因为它专门用于在 RDBMS 和 HDFS 之间迁移数据。

Sqoop 中可用的每个选项都经过微调,以便在进行数据摄取时获得最佳性能。

您可以从讨论控制映射器数量的选项-m 开始。

这是从 RDBMS 并行获取数据所需要做的。我可以在 Spark SQL 中完成吗? 当然可以,但是开发人员需要照顾 "multithreading" Sqoop 已经自动照顾。