从包含 python 中大量文件的 zip 中高效地读取一个文件
efficiently read one file from a zip containing a lot of files in python
我将索引存储在磁盘上的压缩 zip 中,并想从此 zip 中提取单个文件。在python中这样做好像很慢,请问有没有办法解决这个问题
with zipfile.ZipFile("testoutput/index_doc.zip", mode='r') as myzip:
with myzip.open("c0ibtxf_i.txt") as mytxt:
txt = mytxt.read()
txt = codecs.decode(txt, "utf-8")
print(txt)
是我用的python代码。 运行 python 中的这个脚本需要很长时间
python3 testunzip.py 1.22s user 0.06s system 98% cpu 1.303 total
这很烦人,尤其是因为我知道它可以运行得更快:
unzip -p testoutput/index_doc.zip c0ibtxf_i.txt 0.01s user 0.00s system 69% cpu 0.023 total
根据要求:分析
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.051 0.051 1.492 1.492 <string>:1(<module>)
127740 0.043 0.000 0.092 0.000 cp437.py:14(decode)
1 0.000 0.000 1.441 1.441 testunzip.py:69(toprofile)
1 0.000 0.000 0.000 0.000 threading.py:72(RLock)
1 0.000 0.000 0.000 0.000 utf_8.py:15(decode)
1 0.000 0.000 0.000 0.000 zipfile.py:1065(__enter__)
1 0.000 0.000 0.000 0.000 zipfile.py:1068(__exit__)
1 0.692 0.692 1.441 1.441 zipfile.py:1085(_RealGetContents)
1 0.000 0.000 0.000 0.000 zipfile.py:1194(getinfo)
1 0.000 0.000 0.000 0.000 zipfile.py:1235(open)
1 0.000 0.000 0.000 0.000 zipfile.py:1591(__del__)
2 0.000 0.000 0.000 0.000 zipfile.py:1595(close)
2 0.000 0.000 0.000 0.000 zipfile.py:1713(_fpclose)
1 0.000 0.000 0.000 0.000 zipfile.py:191(_EndRecData64)
1 0.000 0.000 0.000 0.000 zipfile.py:234(_EndRecData)
127739 0.180 0.000 0.220 0.000 zipfile.py:320(__init__)
127739 0.046 0.000 0.056 0.000 zipfile.py:436(_decodeExtra)
1 0.000 0.000 0.000 0.000 zipfile.py:605(_check_compression)
1 0.000 0.000 0.000 0.000 zipfile.py:636(_get_decompressor)
1 0.000 0.000 0.000 0.000 zipfile.py:654(__init__)
3 0.000 0.000 0.000 0.000 zipfile.py:660(read)
1 0.000 0.000 0.000 0.000 zipfile.py:667(close)
1 0.000 0.000 0.000 0.000 zipfile.py:708(__init__)
1 0.000 0.000 0.000 0.000 zipfile.py:821(read)
1 0.000 0.000 0.000 0.000 zipfile.py:854(_update_crc)
1 0.000 0.000 0.000 0.000 zipfile.py:901(_read1)
1 0.000 0.000 0.000 0.000 zipfile.py:937(_read2)
1 0.000 0.000 0.000 0.000 zipfile.py:953(close)
1 0.000 0.000 1.441 1.441 zipfile.py:981(__init__)
127740 0.049 0.000 0.049 0.000 {built-in method _codecs.charmap_decode}
1 0.000 0.000 0.000 0.000 {built-in method _codecs.decode}
1 0.000 0.000 0.000 0.000 {built-in method _codecs.utf_8_decode}
127743 0.058 0.000 0.058 0.000 {built-in method _struct.unpack}
127739 0.016 0.000 0.016 0.000 {built-in method builtins.chr}
1 0.000 0.000 1.492 1.492 {built-in method builtins.exec}
1 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr}
2 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance}
255484 0.020 0.000 0.020 0.000 {built-in method builtins.len}
1 0.000 0.000 0.000 0.000 {built-in method builtins.max}
1 0.000 0.000 0.000 0.000 {built-in method builtins.min}
1 0.000 0.000 0.000 0.000 {built-in method builtins.print}
1 0.000 0.000 0.000 0.000 {built-in method io.open}
2 0.000 0.000 0.000 0.000 {built-in method zlib.crc32}
1 0.000 0.000 0.000 0.000 {function ZipExtFile.close at 0x101975620}
127741 0.011 0.000 0.011 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'close' of '_io.BufferedReader' objects}
127740 0.224 0.000 0.317 0.000 {method 'decode' of 'bytes' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
127739 0.024 0.000 0.024 0.000 {method 'find' of 'str' objects}
1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects}
7 0.006 0.001 0.006 0.001 {method 'read' of '_io.BufferedReader' objects}
510956 0.071 0.000 0.071 0.000 {method 'read' of '_io.BytesIO' objects}
8 0.000 0.000 0.000 0.000 {method 'seek' of '_io.BufferedReader' objects}
4 0.000 0.000 0.000 0.000 {method 'tell' of '_io.BufferedReader' objects}
好像是在构造函数中发生了什么?我能以某种方式避免这种开销吗?
我知道问题出在哪里了:
- pythons zipfile 库为 zip
中的每个文件构建信息对象列表
- 这会导致 zipfile 在加载后非常快。
- 但是当 zip 中有很多文件并且每次加载 zip 时只需要这些文件的一小部分时,创建信息列表的开销会花费很多时间。
为了解决这个问题,我调整了 python 的 zipfile 的源代码。它具有您需要的所有默认功能,但是当您向构造函数提供要提取的文件名列表时,它不会构建整个信息列表。
在您只需要 zip 中的几个文件的特定用例中,这将在性能和内存使用方面产生很大差异。
对于上面示例中的特定情况(即从包含 128K 文件的 zip 中仅提取一个文件,新实现的速度现在接近解压缩方法的速度)
一个测试用例:
def original_zipfile():
import zipfile
with zipfile.ZipFile("testoutput/index_doc.zip", mode='r') as myzip:
with myzip.open("c6kn5pu_i.txt") as mytxt:
txt = mytxt.read()
def my_zipfile():
import zipfile2
with zipfile2.ZipFile("testoutput/index_doc.zip", to_extract=["c6kn5pu_i.txt"], mode='r') as myzip:
with myzip.open("c6kn5pu_i.txt") as mytxt:
txt = mytxt.read()
if __name__ == "__main__":
import time
time1 = time.time()
original_zipfile()
print("running time of original_zipfile = "+str(time.time()-time1))
time1 = time.time()
my_zipfile()
print("running time of my_new_zipfile = "+str(time.time()-time1))
print(myStopwatch.getPretty())
产生以下时间读数
running time of original_zipfile = 1.0871901512145996
running time of my_new_zipfile = 0.07036209106445312
我将包含源代码,但请注意我的实现有 2 个小缺陷(一旦您提供了提取列表,如果您不提供,行为将与之前提到的相同):
- 它假定所有文件名都以相同的编码进行编码(这是我为自己的目的而包含的优化)
- 其他功能可能会改变(例如 extract_all 可能会失败或仅提取您提供给构造函数的文件)
我将索引存储在磁盘上的压缩 zip 中,并想从此 zip 中提取单个文件。在python中这样做好像很慢,请问有没有办法解决这个问题
with zipfile.ZipFile("testoutput/index_doc.zip", mode='r') as myzip:
with myzip.open("c0ibtxf_i.txt") as mytxt:
txt = mytxt.read()
txt = codecs.decode(txt, "utf-8")
print(txt)
是我用的python代码。 运行 python 中的这个脚本需要很长时间
python3 testunzip.py 1.22s user 0.06s system 98% cpu 1.303 total
这很烦人,尤其是因为我知道它可以运行得更快:
unzip -p testoutput/index_doc.zip c0ibtxf_i.txt 0.01s user 0.00s system 69% cpu 0.023 total
根据要求:分析
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.051 0.051 1.492 1.492 <string>:1(<module>)
127740 0.043 0.000 0.092 0.000 cp437.py:14(decode)
1 0.000 0.000 1.441 1.441 testunzip.py:69(toprofile)
1 0.000 0.000 0.000 0.000 threading.py:72(RLock)
1 0.000 0.000 0.000 0.000 utf_8.py:15(decode)
1 0.000 0.000 0.000 0.000 zipfile.py:1065(__enter__)
1 0.000 0.000 0.000 0.000 zipfile.py:1068(__exit__)
1 0.692 0.692 1.441 1.441 zipfile.py:1085(_RealGetContents)
1 0.000 0.000 0.000 0.000 zipfile.py:1194(getinfo)
1 0.000 0.000 0.000 0.000 zipfile.py:1235(open)
1 0.000 0.000 0.000 0.000 zipfile.py:1591(__del__)
2 0.000 0.000 0.000 0.000 zipfile.py:1595(close)
2 0.000 0.000 0.000 0.000 zipfile.py:1713(_fpclose)
1 0.000 0.000 0.000 0.000 zipfile.py:191(_EndRecData64)
1 0.000 0.000 0.000 0.000 zipfile.py:234(_EndRecData)
127739 0.180 0.000 0.220 0.000 zipfile.py:320(__init__)
127739 0.046 0.000 0.056 0.000 zipfile.py:436(_decodeExtra)
1 0.000 0.000 0.000 0.000 zipfile.py:605(_check_compression)
1 0.000 0.000 0.000 0.000 zipfile.py:636(_get_decompressor)
1 0.000 0.000 0.000 0.000 zipfile.py:654(__init__)
3 0.000 0.000 0.000 0.000 zipfile.py:660(read)
1 0.000 0.000 0.000 0.000 zipfile.py:667(close)
1 0.000 0.000 0.000 0.000 zipfile.py:708(__init__)
1 0.000 0.000 0.000 0.000 zipfile.py:821(read)
1 0.000 0.000 0.000 0.000 zipfile.py:854(_update_crc)
1 0.000 0.000 0.000 0.000 zipfile.py:901(_read1)
1 0.000 0.000 0.000 0.000 zipfile.py:937(_read2)
1 0.000 0.000 0.000 0.000 zipfile.py:953(close)
1 0.000 0.000 1.441 1.441 zipfile.py:981(__init__)
127740 0.049 0.000 0.049 0.000 {built-in method _codecs.charmap_decode}
1 0.000 0.000 0.000 0.000 {built-in method _codecs.decode}
1 0.000 0.000 0.000 0.000 {built-in method _codecs.utf_8_decode}
127743 0.058 0.000 0.058 0.000 {built-in method _struct.unpack}
127739 0.016 0.000 0.016 0.000 {built-in method builtins.chr}
1 0.000 0.000 1.492 1.492 {built-in method builtins.exec}
1 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr}
2 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance}
255484 0.020 0.000 0.020 0.000 {built-in method builtins.len}
1 0.000 0.000 0.000 0.000 {built-in method builtins.max}
1 0.000 0.000 0.000 0.000 {built-in method builtins.min}
1 0.000 0.000 0.000 0.000 {built-in method builtins.print}
1 0.000 0.000 0.000 0.000 {built-in method io.open}
2 0.000 0.000 0.000 0.000 {built-in method zlib.crc32}
1 0.000 0.000 0.000 0.000 {function ZipExtFile.close at 0x101975620}
127741 0.011 0.000 0.011 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'close' of '_io.BufferedReader' objects}
127740 0.224 0.000 0.317 0.000 {method 'decode' of 'bytes' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
127739 0.024 0.000 0.024 0.000 {method 'find' of 'str' objects}
1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects}
7 0.006 0.001 0.006 0.001 {method 'read' of '_io.BufferedReader' objects}
510956 0.071 0.000 0.071 0.000 {method 'read' of '_io.BytesIO' objects}
8 0.000 0.000 0.000 0.000 {method 'seek' of '_io.BufferedReader' objects}
4 0.000 0.000 0.000 0.000 {method 'tell' of '_io.BufferedReader' objects}
好像是在构造函数中发生了什么?我能以某种方式避免这种开销吗?
我知道问题出在哪里了:
- pythons zipfile 库为 zip 中的每个文件构建信息对象列表
- 这会导致 zipfile 在加载后非常快。
- 但是当 zip 中有很多文件并且每次加载 zip 时只需要这些文件的一小部分时,创建信息列表的开销会花费很多时间。
为了解决这个问题,我调整了 python 的 zipfile 的源代码。它具有您需要的所有默认功能,但是当您向构造函数提供要提取的文件名列表时,它不会构建整个信息列表。
在您只需要 zip 中的几个文件的特定用例中,这将在性能和内存使用方面产生很大差异。
对于上面示例中的特定情况(即从包含 128K 文件的 zip 中仅提取一个文件,新实现的速度现在接近解压缩方法的速度)
一个测试用例:
def original_zipfile():
import zipfile
with zipfile.ZipFile("testoutput/index_doc.zip", mode='r') as myzip:
with myzip.open("c6kn5pu_i.txt") as mytxt:
txt = mytxt.read()
def my_zipfile():
import zipfile2
with zipfile2.ZipFile("testoutput/index_doc.zip", to_extract=["c6kn5pu_i.txt"], mode='r') as myzip:
with myzip.open("c6kn5pu_i.txt") as mytxt:
txt = mytxt.read()
if __name__ == "__main__":
import time
time1 = time.time()
original_zipfile()
print("running time of original_zipfile = "+str(time.time()-time1))
time1 = time.time()
my_zipfile()
print("running time of my_new_zipfile = "+str(time.time()-time1))
print(myStopwatch.getPretty())
产生以下时间读数
running time of original_zipfile = 1.0871901512145996
running time of my_new_zipfile = 0.07036209106445312
我将包含源代码,但请注意我的实现有 2 个小缺陷(一旦您提供了提取列表,如果您不提供,行为将与之前提到的相同):
- 它假定所有文件名都以相同的编码进行编码(这是我为自己的目的而包含的优化)
- 其他功能可能会改变(例如 extract_all 可能会失败或仅提取您提供给构造函数的文件)