二分图所有可能的最大匹配

All possible maximum matchings of a bipartite graph

我正在使用 networkx to find the maximum cardinality matching 二分图。

特定图形的匹配边不是唯一的。

有没有办法找到所有的最大匹配?

对于下面的例子,下面的所有边都可以是最大匹配:

{1: 2, 2: 1}{1: 3, 3: 1}{1: 4, 4: 1}

import networkx as nx
import matplotlib.pyplot as plt

G = nx.MultiDiGraph()
edges = [(1,3), (1,4), (1,2)]

nx.is_bipartite(G)
True

nx.draw(G, with_labels=True)
plt.show()

不幸的是,

nx.bipartite.maximum_matching(G)

仅returns

{1: 2, 2: 1}

有没有办法让我也得到其他组合?

Takeaki Uno 的论文 "Algorithms for Enumerating All Perfect, Maximum and Maximal Matchings in Bipartite Graphs" 对此有一个算法。 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.8179&rep=rep1&type=pdf

定理 2 说 “二分图中的最大匹配可以在 O(mn^1/2+ nNm) 时间和 O(m) space,其中 Nm 是 G 中的最大匹配数。"

我读过 Uno 的作品并试图想出一个实现。下面是我非常冗长的代码和一个工作示例。在这种特殊情况下,有 4 个 "feasible" 个顶点(根据 Uno 的术语),所以用一个已经覆盖的顶点切换每个顶点,你总共有 2^4 = 16 个不同的可能最大匹配。

我不得不承认我是图论的新手,我并没有完全遵循 Uno 的流程,其中存在细微差别,而且大多数情况下我没有尝试进行任何优化。我确实很难理解这篇论文,因为我认为解释不是很完美,而且数字中可能有错误。所以请谨慎使用,如果您能帮助优化它,那将是非常棒的!

import networkx as nx
from networkx import bipartite

def plotGraph(graph):
    import matplotlib.pyplot as plt
    fig=plt.figure()
    ax=fig.add_subplot(111)

    pos=[(ii[1],ii[0]) for ii in graph.nodes()]
    pos_dict=dict(zip(graph.nodes(),pos))
    nx.draw(graph,pos=pos_dict,ax=ax,with_labels=True)
    plt.show(block=False)
    return


def formDirected(g,match):
    '''Form directed graph D from G and matching M.

    <g>: undirected bipartite graph. Nodes are separated by their
         'bipartite' attribute.
    <match>: list of edges forming a matching of <g>. 

    Return <d>: directed graph, with edges in <match> pointing from set-0
                (bipartite attribute ==0) to set-1 (bipartite attrbiute==1),
                and the other edges in <g> but not in <matching> pointing
                from set-1 to set-0.
    '''

    d=nx.DiGraph()

    for ee in g.edges():
        if ee in match or (ee[1],ee[0]) in match:
            if g.node[ee[0]]['bipartite']==0:
                d.add_edge(ee[0],ee[1])
            else:
                d.add_edge(ee[1],ee[0])
        else:
            if g.node[ee[0]]['bipartite']==0:
                d.add_edge(ee[1],ee[0])
            else:
                d.add_edge(ee[0],ee[1])

    return d


def enumMaximumMatching(g):
    '''Find all maximum matchings in an undirected bipartite graph.

    <g>: undirected bipartite graph. Nodes are separated by their
         'bipartite' attribute.

    Return <all_matches>: list, each is a list of edges forming a maximum
                          matching of <g>. 
    '''

    all_matches=[]

    #----------------Find one matching M----------------
    match=bipartite.hopcroft_karp_matching(g)

    #---------------Re-orient match arcs---------------
    match2=[]
    for kk,vv in match.items():
        if g.node[kk]['bipartite']==0:
            match2.append((kk,vv))
    match=match2
    all_matches.append(match)

    #-----------------Enter recursion-----------------
    all_matches=enumMaximumMatchingIter(g,match,all_matches,None)

    return all_matches


def enumMaximumMatchingIter(g,match,all_matches,add_e=None):
    '''Recurively search maximum matchings.

    <g>: undirected bipartite graph. Nodes are separated by their
         'bipartite' attribute.
    <match>: list of edges forming one maximum matching of <g>.
    <all_matches>: list, each is a list of edges forming a maximum
                   matching of <g>. Newly found matchings will be appended
                   into this list.
    <add_e>: tuple, the edge used to form subproblems. If not None,
             will be added to each newly found matchings.

    Return <all_matches>: updated list of all maximum matchings.
    '''

    #---------------Form directed graph D---------------
    d=formDirected(g,match)

    #-----------------Find cycles in D-----------------
    cycles=list(nx.simple_cycles(d))

    if len(cycles)==0:

        #---------If no cycle, find a feasible path---------
        all_uncovered=set(g.node).difference(set([ii[0] for ii in match]))
        all_uncovered=all_uncovered.difference(set([ii[1] for ii in match]))
        all_uncovered=list(all_uncovered)

        #--------------If no path, terminiate--------------
        if len(all_uncovered)==0:
            return all_matches

        #----------Find a length 2 feasible path----------
        idx=0
        uncovered=all_uncovered[idx]
        while True:

            if uncovered not in nx.isolates(g):
                paths=nx.single_source_shortest_path(d,uncovered,cutoff=2)
                len2paths=[vv for kk,vv in paths.items() if len(vv)==3]

                if len(len2paths)>0:
                    reversed=False
                    break

                #----------------Try reversed path----------------
                paths_rev=nx.single_source_shortest_path(d.reverse(),uncovered,cutoff=2)
                len2paths=[vv for kk,vv in paths_rev.items() if len(vv)==3]

                if len(len2paths)>0:
                    reversed=True
                    break

            idx+=1
            if idx>len(all_uncovered)-1:
                return all_matches

            uncovered=all_uncovered[idx]

        #-------------Create a new matching M'-------------
        len2path=len2paths[0]
        if reversed:
            len2path=len2path[::-1]
        len2path=zip(len2path[:-1],len2path[1:])

        new_match=[]
        for ee in d.edges():
            if ee in len2path:
                if g.node[ee[1]]['bipartite']==0:
                    new_match.append((ee[1],ee[0]))
            else:
                if g.node[ee[0]]['bipartite']==0:
                    new_match.append(ee)

        if add_e is not None:
            for ii in add_e:
                new_match.append(ii)

        all_matches.append(new_match)

        #---------------------Select e---------------------
        e=set(len2path).difference(set(match))
        e=list(e)[0]

        #-----------------Form subproblems-----------------
        g_plus=g.copy()
        g_minus=g.copy()
        g_plus.remove_node(e[0])
        g_plus.remove_node(e[1])

        g_minus.remove_edge(e[0],e[1])

        add_e_new=[e,]
        if add_e is not None:
            add_e_new.extend(add_e)

        all_matches=enumMaximumMatchingIter(g_minus,match,all_matches,add_e)
        all_matches=enumMaximumMatchingIter(g_plus,new_match,all_matches,add_e_new)

    else:
        #----------------Find a cycle in D----------------
        cycle=cycles[0]
        cycle.append(cycle[0])
        cycle=zip(cycle[:-1],cycle[1:])

        #-------------Create a new matching M'-------------
        new_match=[]
        for ee in d.edges():
            if ee in cycle:
                if g.node[ee[1]]['bipartite']==0:
                    new_match.append((ee[1],ee[0]))
            else:
                if g.node[ee[0]]['bipartite']==0:
                    new_match.append(ee)

        if add_e is not None:
            for ii in add_e:
                new_match.append(ii)

        all_matches.append(new_match)

        #-----------------Choose an edge E-----------------
        e=set(match).intersection(set(cycle))
        e=list(e)[0]

        #-----------------Form subproblems-----------------
        g_plus=g.copy()
        g_minus=g.copy()
        g_plus.remove_node(e[0])
        g_plus.remove_node(e[1])
        g_minus.remove_edge(e[0],e[1])

        add_e_new=[e,]
        if add_e is not None:
            add_e_new.extend(add_e)

        all_matches=enumMaximumMatchingIter(g_plus,match,all_matches,add_e_new)
        all_matches=enumMaximumMatchingIter(g_minus,new_match,all_matches,add_e)

    return all_matches

if __name__=='__main__':
    g=nx.Graph()
    edges=[
            [(1,0), (0,0)],
            [(1,1), (0,0)],
            [(1,2), (0,2)],
            [(1,3), (0,2)],
            [(1,4), (0,3)],
            [(1,4), (0,5)],
            [(1,5), (0,2)],
            [(1,5), (0,4)],
            [(1,6), (0,1)],
            [(1,6), (0,4)],
            [(1,6), (0,6)]
            ]

    for ii in edges:
        g.add_node(ii[0],bipartite=0)
        g.add_node(ii[1],bipartite=1)

    g.add_edges_from(edges)
    plotGraph(g)

    all_matches=enumMaximumMatching(g)

    for mm in all_matches:
        g_match=nx.Graph()
        for ii in mm:
            g_match.add_edge(ii[0],ii[1])
        plotGraph(g_match)